
Linling Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Enhancement of Bismuth <scp>NIR</scp> Luminescence by Aluminum and Its Mechanism in Bismuthâ€Doped Germanate Laser Glass. Journal of the American Ceramic Society, 2016, 99, 2071-2076.	1.9	48
2	Topo hemical Tailoring of Tellurium Quantum Dot Precipitation from Supercooled Polyphosphates for Broadband Optical Amplification. Advanced Optical Materials, 2016, 4, 1624-1634.	3.6	33
3	Synthesis, Structure, and Performance of Efficient Red Phosphor LiNaGe ₄ O ₉ :Mn ⁴⁺ and Its Application in Warm <scp>WLED</scp> s. Journal of the American Ceramic Society, 2016, 99, 2029-2034.	1.9	30
4	Mechanism for broadening and enhancing Nd ³⁺ emission in zinc aluminophosphate laser glass by addition of Bi ₂ O ₃ . Journal of the American Ceramic Society, 2019, 102, 1694-1702.	1.9	20
5	Tunable luminescence from bismuthâ€doped phosphate laser glass by engineering photonic glass structure. Journal of the American Ceramic Society, 2018, 101, 1916-1922.	1.9	18
6	Tailoring Cluster Configurations Enables Tunable Broad-Band Luminescence in Glass. Chemistry of Materials, 2020, 32, 8653-8661.	3.2	16
7	Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications. Photonics Research, 2022, 10, 1187.	3.4	13
8	Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses. Optics Express, 2016, 24, 18649.	1.7	12
9	D2h-Symmetric Tetratellurium Clusters in Silicate Class as a Broadband NIR Light Source for Spectroscopy Applications. ACS Applied Materials & Interfaces, 2020, 12, 51628-51636.	4.0	9
10	Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass. Optics Letters, 2018, 43, 4823.	1.7	9
11	Glassâ€forming region and enhanced Bi NIR emission in sodium tantalum silicate laser glass. Journal of the American Ceramic Society, 2019, 102, 2522-2530.	1.9	8
12	Improving luminescence behavior and glass stability of telluriumâ€doped germanate glasses by modifying network topology. Journal of the American Ceramic Society, 2022, 105, 929-937.	1.9	8
13	Quantitative prediction of the structure and properties of Li ₂ O–Ta ₂ O ₅ –SiO ₂ glasses via phase diagram approach. Journal of the American Ceramic Society, 2019, 102, 185-194.	1.9	6
14	Topological control of negatively charged local environments for tuning bismuth NIR luminescence in glass materials. Journal of Alloys and Compounds, 2022, 898, 162884.	2.8	5
15	Infrared GRIN GeS ₂ –Sb ₂ S ₃ –CsCl chalcogenide glass–ceramics. Journal of the American Ceramic Society, 2022, 105, 6007-6012.	1.9	5
16	Tunable broadband near-infrared luminescence in glass realized by defect-engineering. Optics Express, 2021, 29, 32149.	1.7	4