Yiming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694047/publications.pdf

Version: 2024-02-01

1125743
13
g-index
108
citing authors

#	Article	IF	CITATIONS
1	Hierarchical Adaptive Pooling by Capturing High-Order Dependency for Graph Representation Learning. IEEE Transactions on Knowledge and Data Engineering, 2023, 35, 3952-3965.	5.7	10
2	Fast Compressive Spectral Clustering for Large-Scale Sparse Graph. IEEE Transactions on Big Data, 2022, 8, 193-202.	6.1	5
3	TianheGraph: Customizing Graph Search for Graph500 on Tianhe Supercomputer. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 941-951.	5.6	7
4	XSP: Fast SSSP Based on Communication-Computation Collaboration. Lecture Notes in Computer Science, 2022, , 53-63.	1.3	1
5	An optimal deployment scheme for extremely fast charging stations. Peer-to-Peer Networking and Applications, 2022, 15, 1486-1504.	3.9	2
6	S2 Reducer: High-Performance Sparse Communication to Accelerate Distributed Deep Learning. , 2022, , .		2
7	TASP: Enabling Time-Triggered Task Scheduling in TSN-Based Mixed-Criticality Systems. , 2022, , .		3
8	Elastic scheduler: Heterogeneous and dynamic deep Learning in the cloud. Concurrency Computation Practice and Experience, 2021, 33, e6206.	2.2	0
9	QRDF: An efficient RDF graph processing system for fast query. Concurrency Computation Practice and Experience, 2021, 33, e6441.	2.2	1
10	An efficient onâ€demand charging scheduling scheme for mobile charging vehicle. International Journal of Communication Systems, 2021, 34, e4919.	2.5	0
11	Optimizing Resource Allocation for Data-Parallel Jobs Via GCN-Based Prediction. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 2188-2201.	5.6	О
12	Processing extreme-scale graphs on China's supercomputers. Communications of the ACM, 2021, 64, 60-63.	4.5	2
13	IAP: Instant Auditing Protocol for Anonymous Payments. , 2021, , .		0
14	Collaborative deep learning across multiple data centers. Science China Information Sciences, 2020, 63, 1.	4.3	10
15	TopoX: Topology Refactorization for Minimizing Network Communication in Graph Computations. IEEE/ACM Transactions on Networking, 2020, 28, 2768-2782.	3.8	13
16	URSAL: Ultra-Efficient, Reliable, Scalable, and Available Block Storage at Low Cost., 2020,,.		1
17	Coordinative Scheduling of Computation and Communication in Data-parallel Systems. IEEE Transactions on Computers, 2020, , 1-1.	3.4	1
18	PBS. ACM Transactions on Storage, 2020, 16, 1-25.	2.1	12

#	Article	IF	CITATIONS
19	GraphA: Efficient Partitioning and Storage for Distributed Graph Computation. IEEE Transactions on Services Computing, 2019 , , $1-1$.	4.6	2
20	Guest Editor's Introduction: Special Section on Virtualization and Services for Cloud-Based Application Systems. IEEE Transactions on Services Computing, 2019, 12, 88-90.	4.6	3
21	Leveraging Glocality for Fast Failure Recovery in Distributed RAM Storage. ACM Transactions on Storage, 2019, 15, 1-24.	2.1	9
22	KylinX. ACM Transactions on Computer Systems, 2019, 37, 1-27.	0.8	4
23	TopoX. Proceedings of the VLDB Endowment, 2019, 12, 891-905.	3.8	22
24	CSR: Classified Source Routing in Distributed Networks. IEEE Transactions on Cloud Computing, 2018, 6, 464-477.	4.4	8
25	DSDR: Dynamic Semantic Discard Reader for Open-Domain Question Answering. , 2018, , .		3
26	CubicRing: Exploiting Network Proximity for Distributed In-Memory Key-Value Store. IEEE/ACM Transactions on Networking, 2017, 25, 2040-2053.	3.8	13
27	Delay-bounded skyline computing for large-scale real-time online data analytics. Concurrency Computation Practice and Experience, 2017, 29, e4085.	2.2	0
28	Fast Compressive Spectral Clustering. , 2017, , .		5
29	Fast Compressive Spectral Clustering., 2017,,. A Case for Memory Frequency Sensitivity., 2017,,.		0
		4.2	
29	A Case for Memory Frequency Sensitivity. , 2017, , .	4.2	0
30	A Case for Memory Frequency Sensitivity., 2017,,. SwapX: An NVM-Based Hierarchical Swapping Framework. IEEE Access, 2017, 5, 16383-16392.	4.2 7.5	3
30 31	A Case for Memory Frequency Sensitivity., 2017,,. SwapX: An NVM-Based Hierarchical Swapping Framework. IEEE Access, 2017, 5, 16383-16392. CubeX: Leveraging glocality of cube-based networks for RAM-based key-value store., 2017,,. Distance-aware bloom filters: Enabling collaborative search for efficient resource discovery. Future		0 3 5
29 30 31 32	A Case for Memory Frequency Sensitivity., 2017,,. SwapX: An NVM-Based Hierarchical Swapping Framework. IEEE Access, 2017, 5, 16383-16392. CubeX: Leveraging glocality of cube-based networks for RAM-based key-value store., 2017,,. Distance-aware bloom filters: Enabling collaborative search for efficient resource discovery. Future Generation Computer Systems, 2013, 29, 1621-1630. Distributed Line Graphs: A Universal Technique for Designing DHTs Based on Arbitrary Regular Graphs.	7. 5	0 3 5 11
30 31 32 33	A Case for Memory Frequency Sensitivity., 2017,,. SwapX: An NVM-Based Hierarchical Swapping Framework. IEEE Access, 2017, 5, 16383-16392. CubeX: Leveraging glocality of cube-based networks for RAM-based key-value store., 2017,,. Distance-aware bloom filters: Enabling collaborative search for efficient resource discovery. Future Generation Computer Systems, 2013, 29, 1621-1630. Distributed Line Graphs: A Universal Technique for Designing DHTs Based on Arbitrary Regular Graphs. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 1556-1569.	7. 5	0 3 5 11

#	:	Article	IF	CITATIONS
37	7	Enabling routing control in a DHT. IEEE Journal on Selected Areas in Communications, 2010, 28, 28-38.	14.0	16
38	8	SKY: efficient peer-to-peer networks based on distributed Kautz graphs. Science in China Series F: Information Sciences, 2009, 52, 588-601.	1.1	14