
Megumu Inaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940204/publications.pdf Version: 2024-02-01

MECHMILINARA

#	Article	IF	CITATIONS
1	Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catalysis Letters, 2005, 105, 249-252.	1.4	253
2	Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Ptâ^'Re/H-ZSM-5 Catalyst. Energy & Fuels, 2010, 24, 2404-2409.	2.5	176
3	Ethanol conversion to aromatic hydrocarbons over several zeolite catalystsÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 135-141.	0.6	111
4	Catalytic fast pyrolysis of jatropha wastes. Journal of Analytical and Applied Pyrolysis, 2012, 94, 75-82.	2.6	89
5	Direct oxidation of benzene to phenol by molecular oxygen over catalytic systems containing Pd(OAc)2 and heteropolyacid immobilized on HMS or PIM. Journal of Molecular Catalysis A, 2006, 256, 247-255.	4.8	87
6	Hydrogen Production by Gasification of Cellulose over Ni Catalysts Supported on Zeolites. Energy & Fuels, 2006, 20, 432-438.	2.5	80
7	Production of olefins from ethanol by Fe-supported zeolite catalysts. Green Chemistry, 2007, 9, 638.	4.6	80
8	Liquid-phase oxidation of benzene to phenol by molecular oxygen over transition metal substituted polyoxometalate compounds. Catalysis Communications, 2005, 6, 679-683.	1.6	71
9	Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen. Applied Catalysis A: General, 2004, 257, 43-47.	2.2	68
10	Mixed alcohols synthesis from syngas over Cs- and Ni-modified Cu/CeO2 catalysts. Fuel, 2013, 104, 62-69.	3.4	66
11	Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propane. Catalysis Letters, 1996, 36, 223-227.	1.4	64
12	Synthesis of ethanol from syngas over Rh/Ce1â^'xZrxO2 catalysts. Catalysis Today, 2011, 164, 308-314.	2.2	64
13	Performance and characterization of Ru/Al2O3 and Ru/SiO2 catalysts modified with Mn for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2008, 340, 203-211.	2.2	57
14	Hydrogen Production from Steam Reforming of Hydrocarbons over Alkaline-Earth Metal-Modified Fe- or Ni-Based Catalysts. Energy & Fuels, 2004, 18, 122-126.	2.5	56
15	Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis. Fuel Processing Technology, 2013, 110, 206-213.	3.7	55
16	Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts. Reaction Kinetics and Catalysis Letters, 2008, 93, 59-66.	0.6	53
17	Effects of Surface Modification of H-ZSM-5 Catalysts on Direct Transformation of Ethanol into Lower Olefins. Journal of the Japan Petroleum Institute, 2008, 51, 234-239.	0.4	53
18	Silica-supported cobalt catalysts for the selective reduction of nitrogen monoxide with propene. Catalysis Letters, 1996, 39, 269-274.	1.4	45

Месими Ілава

#	Article	IF	CITATIONS
19	Effect of Mn addition on activity and resistance to catalyst deactivation for Fischer–Tropsch synthesis over Ru/Al2O3 and Ru/SiO2 catalysts. Catalysis Communications, 2007, 8, 1531-1537.	1.6	45
20	Syntheses of new peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. Journal of Catalysis, 2007, 248, 277-287.	3.1	43
21	Conversion of Ethanol to Propylene by H-ZSM-5 with Si/Al2 Ratio of 280. Catalysis Letters, 2010, 136, 14-19.	1.4	43
22	Production of olefins from ethanol by Fe and/or Pâ€modified Hâ€ZSMâ€5 zeolite catalysts. Journal of Chemical Technology and Biotechnology, 2011, 86, 95-104.	1.6	42
23	Hydrocracking of Algae Oil into Aviation Fuel-Range Hydrocarbons Using a Pt–Re Catalyst. Energy & Fuels, 2014, 28, 6999-7006.	2.5	42
24	Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen. Applied Catalysis A: General, 2006, 309, 91-105.	2.2	38
25	Selective Hydrocracking of Fischer–Tropsch Waxes to High-quality Diesel Fuel Over Pt-promoted Polyoxocation-pillared Montmorillonites. Topics in Catalysis, 2009, 52, 597-608.	1.3	38
26	Epoxidation of propylene with molecular oxygen in methanol over a peroxo-heteropoly compound immobilized on palladium exchanged HMS. Green Chemistry, 2004, 6, 510.	4.6	35
27	Dehydrogenation of propane over a silica-supported vanadium oxide catalyst. Catalysis Letters, 2005, 102, 201-205.	1.4	33
28	Metal modification effects on ethanol conversion to propylene by H-ZSM-5 with Si/Al2 ratio of 150. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 477-489.	0.8	32
29	Hydrogen production by conversion of methane over nickel-supported USY-type zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2002, 77, 109-115.	0.6	31
30	Steam reforming of gasoline promoted by partial oxidation reaction on novel bimetallic Ni-based catalysts to generate hydrogen for fuel cell-powered automobile applications. Journal of Power Sources, 2005, 145, 707-711.	4.0	29
31	Hydrocracking of Biomass-Derived Materials into Alkanes in the Presence of Platinum-Based Catalyst and Hydrogen. Catalysis Letters, 2010, 140, 8-13.	1.4	29
32	Analyses of Liquid Products from Catalytic Pyrolysis of Jatropha Seed Cakes. Energy & Fuels, 2011, 25, 5429-5437.	2.5	29
33	Hydrogen production by autothermal reforming of sulfur-containing hydrocarbons over re-modified Ni/Sr/ZrO2 catalysts. Applied Catalysis B: Environmental, 2007, 70, 509-514.	10.8	28
34	Selective oxidation of propylene to acetone by molecular oxygen over M/2H5â^'[PMo10V2O40]/HMS (M=Cu2+, Co2+, Ni2+). Catalysis Communications, 2003, 4, 281-285.	1.6	27
35	Direct epoxidation of propylene by molecular oxygen over a catalyst system containing palladium and a peroxo-heteropoly compound in methanol. Chemical Communications, 2004, , 582.	2.2	27
36	Control of the product ratio of CO2/(CO+CO2) and inhibition of catalyst deactivation for steam reforming of gasoline to produce hydrogen. Applied Catalysis B: Environmental, 2004, 48, 243-248.	10.8	25

#	Article	IF	CITATIONS
37	Effect of Fe-loading and reaction temperature on the production of olefins from ethanol by Fe/H-ZSM-5 zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2009, 97, 19-26.	0.6	25
38	Synthesis of Mixed Alcohols from Syngas over Cs-modified Cu/Ce _{1â^'<i>x</i>} Zr _{<i>x</i>} O _{2< Catalysts. Journal of the Japan Petroleum Institute, 2010, 53, 153-159.}	;/ ou b>	25
39	Increase in the number of acid sites of a H-ZSM5 zeolite during the dehydration of ethanol. Catalysis Letters, 2007, 113, 82-85.	1.4	24
40	Synthesis of mixed alcohols from synthesis gas over alkali and Fischer–Tropsch metals modified MoS2/Al2O3-montmorillonite catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 187-200.	0.8	24
41	Synthesis and Catalytic Activity of Niobium-Containing Hexagonal Mesoporous Silica. Chemistry Letters, 2003, 32, 992-993.	0.7	23
42	Lower-Temperature Catalytic Performance of Bimetallic Niâ^'Re/Al2O3Catalyst for Gasoline Reforming to Produce Hydrogen with the Inhibition of Methane Formation. Energy & Fuels, 2006, 20, 1377-1381.	2.5	23
43	Catalytic conversion of ethanol to propylene by H-ZSM-11. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 227-235.	0.8	23
44	Optimization of the reaction conditions for Fe-catalyzed decomposition of methane and characterization of the produced nanocarbon fibers. Catalysis Today, 2019, 332, 11-19.	2.2	22
45	Direct epoxidation of propylene by molecular oxygen over Pd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system. Applied Catalysis B: Environmental, 2005, 58, 51-59.	10.8	21
46	Production of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext> C</mml:mtext> <n mathvariant="bold"> 3 <mml:mo> + </mml:mo> </n </mml:msub></mml:mrow> (and Propylene from Ethanol by Zr-Modified H-ZSM-5 Zeolite Catalysts. Advances in Materials Science</mml:math 	nml:mrows Dlæðins	×mml:mn 19
47	and Engineering, 2012, 2012, 1-7. Activity and deactivation nature of Ru/MnCO3 catalysts for Fischer–Tropsch reaction. Applied Catalysis A: General, 2013, 450, 80-87.	2.2	19
48	Steam Reforming of Bio-Ethanol to Produce Hydrogen over Co/CeO2 Catalysts Derived from Ce1â"xCoxO2â"y Precursors. Catalysts, 2016, 6, 26.	1.6	18
49	Hydrocracking of algae oil to aviation fuel-ranged hydrocarbons over NiMo-supported catalysts. Catalysis Today, 2019, 332, 115-121.	2.2	17
50	Methane Decomposition over Iron-based Catalysts in the Presence of O ₂ and CO ₂ . Journal of the Japan Petroleum Institute, 2003, 46, 196-202.	0.4	16
51	Evaluation of Ni-based catalysts for the catalytic fast pyrolysis of jatropha residues. Journal of Analytical and Applied Pyrolysis, 2016, 118, 308-316.	2.6	16
52	Effects of vanadium supported on ZrO2 and sulfolane on the synthesis of phenol by hydroxylation of benzene with oxygen and acetic acid on palladium catalyst. Catalysis Letters, 2005, 102, 143-147.	1.4	14
53	Highly efficient conversion of gasoline into hydrogen on Al2O3-supported Ni-based catalysts: Catalyst stability enhancement by modification with W. Applied Catalysis A: General, 2009, 358, 264-268.	2.2	14
54	Effects of Ru Precursors on Activity of Ru-SiO ₂ Catalysts Prepared by Alkoxide Method in Fischer-Tropsch Synthesis, Journal of the Japan Petroleum Institute, 2007, 50, 65-68	0.4	12

Megumu Inaba

Месими Ілава

#	Article	IF	CITATIONS
55	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 80, 39-44.	0.6	10
56	Hydrocracking of Fischer–Tropsch Wax to Diesel-range Hydrocarbons over Bifunctional Catalysts Containing Pt and Polyoxocation-pillared Montmorillonite. Chemistry Letters, 2007, 36, 1470-1471.	0.7	10
57	Effects of Pore Size of Ru-SiO ₂ Catalysts Prepared by Alkoxide Method on Fischer-Tropsch Reaction. Journal of the Japan Petroleum Institute, 2007, 50, 349-353.	0.4	10
58	Effect of coexistence of siloxane on production of hydrogen and nanocarbon by methane decomposition using Fe catalyst. International Journal of Hydrogen Energy, 2021, 46, 11556-11563.	3.8	10
59	A novel highly active catalyst system for CO2 reforming of methane and higher hydrocarbons. Catalysis Communications, 2003, 4, 147-151.	1.6	9
60	Catalytic Fast Pyrolysis of Eucalyptus Using Zeolite. Journal of Chemical Engineering of Japan, 2014, 47, 345-351.	0.3	9
61	Additive Effect of Palladium on the Catalytic Activity of In/TiO2–ZrO2for the Selective Reduction of Nitrogen Monoxide in the Presence of Water Vapor. Bulletin of the Chemical Society of Japan, 1997, 70, 2171-2178.	2.0	8
62	Dehydrogenation and Isomerization of n-Butane or Isobutane Over Cr Catalysts Supported on Zeolites. Catalysis Letters, 2002, 84, 273-279.	1.4	8
63	Conversion of Liquid Hydrocarbons into H2and CO2by Integration of Reforming and the Waterâ`'Gas Shift Reaction on Highly Active Multifunctional Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 3228-3232.	1.8	8
64	Mn-modified Ru Catalysts Supported on Carbon Nanotubes for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2009, 52, 16-20.	0.4	8
65	Catalytic Deoxygenation of Hexadecyl Palmitate as a Model Compound of Euglena Oil in H2 and N2 Atmospheres. Catalysts, 2017, 7, 333.	1.6	8
66	Production of Aromatic and Phenolic Compounds by Fast Pyrolysis of Eucalyptus Using Zeolite Catalysts. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 944-952.	0.2	8
67	Heterogeneous carbonylation of dimethyl ether to methyl acetate over bifunctional catalysts containing Rh and heteropoly acids. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 223-238.	0.8	7
68	New Peroxo-polyoxometalates Pillared Hydrotalcite Catalyst for Propylene Epoxidation by Molecular Oxygen in Methanol. Chemistry Letters, 2006, 35, 436-437.	0.7	6
69	Effect of zeolite on the activity of Ru/MnCO3 catalysts for Fischer–Tropsch reaction. Applied Catalysis A: General, 2014, 482, 205-213.	2.2	6
70	Dehydrogenation and Isomerization of Butane over Cr Catalysts Supported on H-SSZ-35 Type Zeolites. Bulletin of the Chemical Society of Japan, 2004, 77, 381-386.	2.0	5
71	Dramatic improvement of catalyst life by rhodium and cerium additives for Ni-based reforming catalysts. Reaction Kinetics and Catalysis Letters, 2008, 93, 51-58.	0.6	5
72	Additive Effect of Mn on Catalytic Activity of Ru/Al ₂ 0 ₃ for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2008, 51, 252-253.	0.4	5

Месими Ілава

#	Article	IF	CITATIONS
73	Zr- and Li-Modified Ru/Sio2 Catalysts for Fischer–Tropsch Synthesis. Catalysis Letters, 2009, 128, 343-348.	1.4	5
74	Production of bio-oil from a Botryococcus Braunii residue. Journal of Analytical and Applied Pyrolysis, 2015, 114, 187-196.	2.6	5
75	Selective hydrocarbon production by the hydrocracking of glucose. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 295-307.	0.8	4
76	Effect of Metal-modified Carbon Catalysts on Fast Pyrolysis of Jatropha Waste. Journal of the Japan Petroleum Institute, 2013, 56, 371-380.	0.4	4
77	Production of Phenolic Compounds by Fast Pyrolysis of Eucalyptus Woody Biomass Using Modified Zeolite Catalysts. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 909-915.	0.2	4
78	Evaluation of PtPd-modified Zeolite Catalysts (ZSM-5, Beta, USY) for Pyrolysis of Jatropha Waste. Journal of the Japan Petroleum Institute, 2014, 57, 133-145.	0.4	4
79	Fischer-Tropsch synthesis over Ru/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 2007, 90, 275-283.	0.6	3
80	Synergistic Effects of Lanthanum and Magnesium Additive to H-ZSM-5 for Ethanol Conversion to Propylene. Journal of the Japan Petroleum Institute, 2011, 54, 390-394.	0.4	3
81	Zeolite synthesis using 1,6-diaminohexane-based organic diammonium salts as templates. Studies in Surface Science and Catalysis, 1999, 125, 125-132.	1.5	3
82	Pretreatment of MFI Type Zeolites with Ethylene to Enhance Their Catalytic Activities for Dehydration of Ethanol. Journal of the Japan Petroleum Institute, 2007, 50, 227-228.	0.4	2
83	Effects of Li and Al2O3 support on the improvement of light hydrocarbons selectivity in Ru-based Fischer–Tropsch reaction. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 129-146.	0.8	1
84	Preparation of zeolite catalysts for dehydrogenation and isomerization of n-butane. Studies in Surface Science and Catalysis, 2000, , 637-645.	1.5	0
85	Dehydrogenation and Isomerization of Butane over Cr Catalysts Supported on H-SSZ-35 Type Zeolites ChemInform, 2004, 35, no.	0.1	0
86	Catalytic Performance of Ru/Al2O3 and Ru/Mn/Al2O3 for Fischer-Tropsch Synthesis. Chemical Industries, 2009, , .	0.1	0