Martin Taubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940144/publications.pdf

Version: 2024-02-01

35	1,326	18	34
papers	citations	h-index	g-index
38	38	38	1563 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Predominance of Cand. Patescibacteria in Groundwater Is Caused by Their Preferential Mobilization From Soils and Flourishing Under Oligotrophic Conditions. Frontiers in Microbiology, 2019, 10, 1407.	3.5	160
2	Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME Journal, 2012, 6, 2291-2301.	9.8	109
3	<scp><i>XoxF</i></scp> encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Environmental Microbiology, 2015, 17, 3937-3948.	3.8	108
4	Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME Journal, 2013, 7, 1877-1885.	9.8	107
5	Protein-based stable isotope probing. Nature Protocols, 2010, 5, 1957-1966.	12.0	97
6	MetaProSIP: Automated Inference of Stable Isotope Incorporation Rates in Proteins for Functional Metaproteomics. Journal of Proteome Research, 2015, 14, 619-627.	3.7	64
7	Proteinâ€based stable isotope probing (proteinâ€SIP) in functional metaproteomics. Mass Spectrometry Reviews, 2012, 31, 683-697.	5.4	61
8	Tracking active groundwater microbes with D ₂ O labelling to understand their ecosystem function. Environmental Microbiology, 2018, 20, 369-384.	3.8	57
9	Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph. Environmental Microbiology, 2015, 17, 4007-4018.	3.8	51
10	Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environmental Microbiology, 2017, 19, 2246-2257.	3.8	50
11	Decarboxylating and Nondecarboxylating Glutaryl-Coenzyme A Dehydrogenases in the Aromatic Metabolism of Obligately Anaerobic Bacteria. Journal of Bacteriology, 2009, 191, 4401-4409.	2.2	40
12	Time resolved proteinâ€based stable isotope probing (Proteinâ€SIP) analysis allows quantification of induced proteins in substrate shift experiments. Proteomics, 2011, 11, 2265-2274.	2.2	40
13	The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environmental Microbiomes, 2021, 16, 24.	5.0	36
14	Rates of dark CO2 fixation are driven by microbial biomass in a temperate forest soil. Soil Biology and Biochemistry, 2020, 150, 107950.	8.8	33
15	Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP). Analytical and Bioanalytical Chemistry, 2011, 401, 1975-1982.	3.7	31
16	Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE, 2019, 14, e0212937.	2.5	30
17	Communal metabolism by <i>Methylococcaceae</i> and <i>Methylophilaceae</i> is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environmental Microbiology, 2019, 21, 3780-3795.	3.8	28
18	Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nature Geoscience, 2022, 15, 561-567.	12.9	28

#	Article	IF	CITATIONS
19	DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods in Molecular Biology, 2017, 1539, 57-74.	0.9	21
20	Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME Journal, 2022, 16, 1153-1162.	9.8	21
21	Monitoring Deuterium Uptake in Single Bacterial Cells via Two-Dimensional Raman Correlation Spectroscopy. Analytical Chemistry, 2021, 93, 7714-7723.	6. 5	18
22	Sulfur-34S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34) of Proteomic Changes in Pseudomonas fluorescens during Naphthalene Degradation. Molecular and Cellular Proteomics, 2013, 12, 2060-2069.	3.8	17
23	Influence of Carbon Sources on Quantification of Deuterium Incorporation in Heterotrophic Bacteria: A Raman-Stable Isotope Labeling Approach. Analytical Chemistry, 2020, 92, 11429-11437.	6.5	17
24	Growth promotion and inhibition induced by interactions of groundwater bacteria. FEMS Microbiology Ecology, 2018, 94, .	2.7	16
25	Limitations in detection of 15N incorporation by mass spectrometry in protein-based stable isotope probing (protein-SIP). Analytical and Bioanalytical Chemistry, 2013, 405, 3989-3996.	3.7	13
26	Comparative Genomics and Mutational Analysis Reveals a Novel XoxF-Utilizing Methylotroph in the Roseobacter Group Isolated From the Marine Environment. Frontiers in Microbiology, 2018, 9, 766.	3 . 5	13
27	Microbial community functioning during plant litter decomposition. Scientific Reports, 2022, 12, 7451.	3.3	12
28	Dark CO2 fixation in temperate beech and pine forest soils. Soil Biology and Biochemistry, 2022, 165, 108526.	8.8	11
29	Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia, 2022, 90, 150787.	1.2	10
30	Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies. Methods in Molecular Biology, 2016, 1399, 235-255.	0.9	5
31	Bacterial Necromass Is Rapidly Metabolized by Heterotrophic Bacteria and Supports Multiple Trophic Levels of the Groundwater Microbiome. Microbiology Spectrum, 2022, 10, .	3.0	5
32	Phenotypic Differentiation of Autotrophic and Heterotrophic Bacterial Cells Using Raman-D ₂ O Labeling. Analytical Chemistry, 2022, 94, 7759-7766.	6. 5	4
33	Phylogenetic and metabolic diversity have contrasting effects on the ecological functioning of bacterial communities. FEMS Microbiology Ecology, 2021, 97, .	2.7	3
34	SIP-Metaproteomics: Linking Microbial Taxonomy, Function, and Activity. Methods in Molecular Biology, 2019, 2046, 57-69.	0.9	2
35	Biogeochemical Cycling of Carbon and Nitrogen in Groundwater—Key Processes and Microbial Drivers. , 2022, , 412-427.		0