Sandeep K Rajput

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human eggs, zygotes, and embryos express the receptor angiotensin 1-converting enzyme 2 and transmembrane serine protease 2 protein necessary for severe acute respiratory syndrome coronavirus 2 infection. F&S Science, 2021, 2, 33-42.	0.9	21
2	Follistatin supplementation induces changes in CDX2 CpG methylation and improves in vitro development of bovine SCNT preimplantation embryos. Reproductive Biology and Endocrinology, 2021, 19, 141.	3.3	3
3	A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Scientific Reports, 2020, 10, 9263.	3.3	13
4	Follistatin treatment modifies DNA methylation of the CDX2 gene in bovine preimplantation embryos. Molecular Reproduction and Development, 2020, 87, 998-1008.	2.0	4
5	Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotropic actions of follistatinâ€. Biology of Reproduction, 2020, 102, 795-805.	2.7	8
6	Simple workflow for genome and methylation analyses of ejaculated bovine spermatozoa with low sperm input. BioTechniques, 2020, 68, 155-158.	1.8	1
7	Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reproduction and Fertility, 2020, 1, 51-65.	1.8	5
8	Dynamics of trophoblast differentiation in peri-implantation–stage human embryos. Proceedings of the United States of America, 2019, 116, 22635-22644.	7.1	68
9	Transgenerational Effects of Periconception Heavy Metal Administration on Adipose Weight and Glucose Homeostasis in Mice at Maturity. Toxicological Sciences, 2019, 168, 610-619.	3.1	11
10	Characterization of H3.3 and HIRA expression and function in bovine early embryos. Molecular Reproduction and Development, 2018, 85, 106-116.	2.0	8
11	CRISPR editing validation, immunostaining and DNA sequencing of individual fixed bovine embryos. BioTechniques, 2018, 65, 281-283.	1.8	1
12	Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation. Scientific Reports, 2018, 8, 7753.	3.3	74
13	Follistatin supplementation during in vitro embryo culture improves developmental competence of bovine embryos produced using sex-sorted semen. Reproductive Biology, 2018, 18, 267-273.	1.9	7
14	Functional role of AKT signaling in bovine early embryonic development: potential link to embryotrophic actions of follistatin. Reproductive Biology and Endocrinology, 2018, 16, 1.	3.3	93
15	Discovery of a novel oocyte-specific Krüppel-associated box domain-containing zinc finger protein required for early embryogenesis in cattle. Mechanisms of Development, 2017, 144, 103-112.	1.7	8
16	Differential Expression of Newly Identified Long Intergenic Nonâ€Coding RNAs in Buffalo Oocytes Indicating Their Possible Role in Maturation and Embryonic Development. Journal of Cellular Biochemistry, 2017, 118, 1712-1721.	2.6	4
17	Pre- and Peri-/Post-Compaction Follistatin Treatment Increases In Vitro Production of Cattle Embryos. PLoS ONE, 2017, 12, e0170808.	2.5	9
18	CHD1 Regulates Deposition of Histone Variant H3.3 During Bovine Early Embryonic Development1. Biology of Reproduction, 2016, 94, 140.	2.7	16

Sandeep K Rajput

#	Article	IF	CITATIONS
19	Expression of TGFβ superfamily components and other markers of oocyte quality in oocytes selected by brilliant cresyl blue staining: Relevance to early embryonic development. Molecular Reproduction and Development, 2015, 82, 251-264.	2.0	27
20	Evidence Supporting a Role for SMAD2/3 in Bovine Early Embryonic Development: Potential Implications for Embryotropic Actions of Follistatin1. Biology of Reproduction, 2015, 93, 86.	2.7	31
21	Differential Histone Modification Status of Spermatozoa in Relation to Fertility of Buffalo Bulls. Journal of Cellular Biochemistry, 2015, 116, 743-753.	2.6	19
22	Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction, 2015, 149, 203-212.	2.6	15
23	Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reproduction, Fertility and Development, 2014, 26, 37.	0.4	19
24	Differential methylation status of <i>IGF2â€H19</i> locus does not affect the fertility of crossbred bulls but some of the CTCF binding sites could be potentially important. Molecular Reproduction and Development, 2014, 81, 350-362.	2.0	18
25	Temporal regulation of mRNAs for select bone morphogenetic proteins (BMP), BMP receptors and their associated SMAD proteins during bovine early embryonic development: effects of exogenous BMP2 on embryo developmental progression. Reproductive Biology and Endocrinology, 2014, 12, 67.	3.3	23
26	Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology, 2014, 82, 750-759.e1.	2.1	49
27	Regulation and Regulatory Role of WNT Signaling in Potentiating FSH Action during Bovine Dominant Follicle Selection. PLoS ONE, 2014, 9, e100201.	2.5	38

Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 2.1

29	A columnâ€based rapid method for the simultaneous isolation of DNA, RNA, miRNA and proteins. Cell Biology International, 2012, 36, 779-783.	3.0	8
30	A reporter promoter assay confirmed the role of a distal promoter NOBOX binding element in enhancing expression of GDF9 gene in buffalo oocytes. Animal Reproduction Science, 2012, 135, 18-24.	1.5	3
31	An Improved Method of Bisulfite Treatment and Purification to Study Precise DNA Methylation from as Little as 10Âpg DNA. Applied Biochemistry and Biotechnology, 2012, 168, 797-804.	2.9	6
32	mtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris). Conservation Genetics, 2009, 10, 909-914.	1.5	25