Edwin van der Pol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940020/publications.pdf

Version: 2024-02-01

		186265	1	82427	
55	7,793	28		51	
papers	citations	h-index		g-index	
				11677	
57	57	57		11677	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 2012, 64, 676-705.	16.0	1,429
2	Singleâ€step isolation of extracellular vesicles by sizeâ€exclusion chromatography. Journal of Extracellular Vesicles, 2014, 3, .	12.2	820
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
4	Methodological Guidelines to Study Extracellular Vesicles. Circulation Research, 2017, 120, 1632-1648.	4.5	728
5	Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Journal of Thrombosis and Haemostasis, 2014, 12, 1182-1192.	3.8	698
6	Optical and nonâ€optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2010, 8, 2596-2607.	3.8	454
7	Single vs. swarm detection of microparticles and exosomes by flow cytometry. Journal of Thrombosis and Haemostasis, 2012, 10, 919-930.	3.8	334
8	Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. Journal of Thrombosis and Haemostasis, 2016, 14, 48-56.	3.8	254
9	MIFlowCytâ€EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles, 2020, 9, 1713526.	12.2	243
10	Innovation in detection of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2013, 11, 36-45.	3.8	203
11	Refractive Index Determination of Nanoparticles in Suspension Using Nanoparticle Tracking Analysis. Nano Letters, 2014, 14, 6195-6201.	9.1	161
12	Handling and storage of human body fluids for analysis of extracellular vesicles. Journal of Extracellular Vesicles, 2015, 4, 29260.	12.2	160
13	Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. Journal of Thrombosis and Haemostasis, 2018, 16, 1236-1245.	3.8	130
14	Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. Journal of Extracellular Vesicles, 2014, 3, 25922.	12.2	126
15	Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 801-810.	3.3	105
16	Towards traceable size determination of extracellular vesicles. Journal of Extracellular Vesicles, 2014, 3, .	12.2	104
17	Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. Journal of Proteomics, 2019, 204, 103403.	2.4	97
18	The generation and use of recombinant extracellular vesicles as biological reference material. Nature Communications, 2019, 10, 3288.	12.8	96

#	Article	IF	CITATIONS
19	Comparison of Generic Fluorescent Markers for Detection of Extracellular Vesicles by Flow Cytometry. Clinical Chemistry, 2018, 64, 680-689.	3.2	76
20	Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. Journal of Extracellular Vesicles, 2020, 9, 1816641.	12.2	70
21	Biological reference materials for extracellular vesicle studies. European Journal of Pharmaceutical Sciences, 2017, 98, 4-16.	4.0	57
22	Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Optics Express, 2013, 21, 29145.	3.4	51
23	Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. Journal of Extracellular Vesicles, 2019, 8, 1643671.	12.2	48
24	Deriving Extracellular Vesicle Size From Scatter Intensities Measured by Flow Cytometry. Current Protocols in Cytometry, 2018, 86, e43.	3.7	47
25	Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. Journal of Thrombosis and Haemostasis, 2020, 18, 609-623.	3.8	46
26	Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. Journal of Thrombosis and Haemostasis, 2018, 16, 1646-1655.	3.8	44
27	Centrifugation affects the purity of liquid biopsyâ€based tumor biomarkers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 1207-1212.	1.5	37
28	Labelâ€free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. Journal of Extracellular Vesicles, 2020, 9, 1730134.	12.2	37
29	Reliable measurements of extracellular vesicles by clinical flow cytometry. American Journal of Reproductive Immunology, 2021, 85, e13350.	1.2	30
30	Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids, 2012, 42, 961-973.	2.7	26
31	P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets. Cardiology Journal, 2020, 26, 782-789.	1.2	25
32	From platelet dust to gold dust: physiological importance and detection of platelet microvesicles. Platelets, 2017, 28, 211-213.	2.3	24
33	Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Physical Review B, 2010, 82, .	3.2	21
34	Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102109.	3.3	21
35	Prostacyclin Analogues Inhibit Platelet Reactivity, Extracellular Vesicle Release and Thrombus Formation in Patients with Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2021, 10, 1024.	2.4	19
36	Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Measurement Science and Technology, 2016, 27, 035701.	2.6	18

#	Article	IF	Citations
37	Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction. Platelets, 2020, 31, 26-32.	2.3	18
38	A Systematic Approach to Improve Scatter Sensitivity of a Flow Cytometer for Detection of Extracellular Vesicles. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 582-591.	1.5	18
39	MIFlowCytâ€EV: The Next Chapter in the Reporting and Reliability of Single Extracellular Vesicle Flow Cytometry Experiments. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 365-368.	1.5	18
40	Minimum information to report about a flow cytometry experiment on extracellular vesicles: Communication from the ISTH SSC subcommittee on vascular biology. Journal of Thrombosis and Haemostasis, 2022, 20, 245-251.	3.8	15
41	Standardized procedure to measure the size distribution of extracellular vesicles together with other particles in biofluids with microfluidic resistive pulse sensing. PLoS ONE, 2021, 16, e0249603.	2.5	14
42	An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma. Communications Biology, 2022, 5, .	4.4	13
43	Extracellular vesicles in post-infarct ventricular remodelling. Kardiologia Polska, 2018, 76, 69-76.	0.6	12
44	EDTA stabilizes the concentration of platelet-derived extracellular vesicles during blood collection and handling. Platelets, 2022, 33, 764-771.	2.3	12
45	Flatâ€ŧop illumination profile in an epifluorescence microscope by dual microlens arrays. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 324-331.	1.5	11
46	Platelet-Derived Microparticles. , 2013, , 453-467.		10
47	Misinterpretation of solid sphere equivalent refractive index measurements and smallest detectable diameters of extracellular vesicles by flow cytometry. Scientific Reports, 2021, 11, 24151.	3.3	9
48	Plasma Concentrations of Extracellular Vesicles Are Decreased in Patients with Post-Infarct Cardiac Remodelling. Biology, 2021, 10, 97.	2.8	8
49	Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. International Journal of Molecular Sciences, 2022, 23, 4530.	4.1	8
50	Quantification of Light Scattering Detection Efficiency and Background in Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 671-679.	1.5	6
51	Wound scabs protect regenerating tissue against harmful ultraviolet radiation. Medical Hypotheses, 2016, 96, 39-41.	1.5	1
52	Quantitative Assessment of Optical Properties in Healthy Cartilage and Repair Tissue by Optical Coherence Tomography and Histology. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 203-209.	2.9	1
53	Spatially resolved modes in GaAs/AlAs micropillar resonators. , 2009, , .		0
54	Improved forward scatter detection of a flow cytometer for detection of extracellular vesicles. , 2019, , .		0

#	Article	lF	CITATIONS
55	Protocol for Measuring Concentrations of Extracellular Vesicles in Human Blood Plasma with Flow Cytometry. Methods in Molecular Biology, 2022, 2504, 55-75.	0.9	0