Karol VelÃ-Åjek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6939365/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of a robotized workstation making use of the integration of CAD models and Robotic Simulation software as way of pairing and comparing real and virtual environments. MATEC Web of Conferences, 2017, 94, 05008.	0.1	6
2	Novel trends in the assembly process as the results of human $\hat{a} \in$ "the industrial robot collaboration. MATEC Web of Conferences, 2017, 137, 04005.	0.1	6
3	Using Virtual Reality tools to support simulations of manufacturing instances in Process Simulate: The case of an iCIM 3000 system. MATEC Web of Conferences, 2017, 137, 04004.	0.1	6
4	Into the early steps of Virtual Commissioning in Tecnomatix Plant Simulation using S7-PLCSIM Advanced and STEP 7 TIA Portal. MATEC Web of Conferences, 2019, 299, 02005.	0.1	6
5	The Possibilities of Increasing the Flexibility of Intelligent Assembly Cell. , 2010, , .		5
6	Clamping Fixtures for Intelligent Cell Manufacturing. Lecture Notes in Computer Science, 2008, , 966-972.	1.0	4
7	Design Alternatives of Intelligent Camera System for Check Parts at the Intelligent Manufacturing-Assembly Cell. Applied Mechanics and Materials, 0, 58-60, 2262-2266.	0.2	4
8	Assembly System Design with Modularity and CA Support Using. Applied Mechanics and Materials, 0, 120, 114-118.	0.2	4
9	A case study of robotic simulations using virtual commissioning supported by the use of virtual reality. MATEC Web of Conferences, 2019, 299, 02006.	0.1	4
10	Joint Programming of Production-Maintenance Tasks: a Simulated Annealing-Based Method. International Journal of Simulation Modelling, 2019, 18, 666-677.	0.6	4
11	Incorporation, Programming and Use of an ABB Robot for the Operations of Palletizing and Depalletizing at an Academic Research Oriented to Intelligent Manufacturing Cell. Applied Mechanics and Materials, 0, 282, 127-132.	0.2	3
12	Selection of the Appropriate Type of Sensory Equipment. Applied Mechanics and Materials, 2013, 365-366, 672-675.	0.2	3
13	Assembly and Disassembly via Automation Tools. Key Engineering Materials, 0, 467-469, 2066-2071.	0.4	2
14	Designing of Intelligent Manufacturing Assembly Cell by Moduls of System Catia and E-Learning Module Creation. Advanced Materials Research, 0, 628, 283-286.	0.3	2
15	New Approach in Design of Automated Assembly Station for Disassembly Process. Applied Mechanics and Materials, 2013, 421, 595-600.	0.2	2
16	Design of Camera System Location at the Station for Loading and Orientation. Applied Mechanics and Materials, 2013, 309, 27-34.	0.2	1
17	The Possibilities of the Communication Methods of iCIM 3000 System and their Main Functions. Applied Mechanics and Materials, 2013, 421, 585-590.	0.2	1
18	The Methodology for the Selection of the Appropriate Sensory Equipment for the Grasping End Effectors in the Assembly Workspace. Applied Mechanics and Materials, 0, 693, 56-61.	0.2	1

Karol VelÃÅiek

#	Article	IF	CITATIONS
19	Intelligent Clamping Fixture in General. Lecture Notes in Computer Science, 2008, , 459-465.	1.0	1
20	Design Alternatives of Positioning Devices in the Shelf Storage System. Lecture Notes in Electrical Engineering, 2012, , 63-68.	0.3	1
21	Pneumatics and Electro-pneumatic Control Laboratory. , 2010, , .		О
22	Analyse of Flexible Assembly Cell via Software Witness. Applied Mechanics and Materials, 0, 120, 65-69.	0.2	0
23	Design Methodology of Automation Equipment and Control System in the Intelligent Assembly Cell. Applied Mechanics and Materials, 0, 58-60, 2407-2412.	0.2	0
24	Designing of Assembly Cell by CA System Support. Key Engineering Materials, 2011, 467-469, 2060-2065.	0.4	0
25	Sensory System Design as an Implement for the Development of the Intelligent Assembly Cell. Advanced Materials Research, 0, 628, 287-291.	0.3	0
26	Organizational Machines Layout and the Application of Individual Features on the Specific Production Respectively Assembly through the Simulation. Advanced Materials Research, 0, 479-481, 508-511.	0.3	0
27	Sensors in the Subsystems of Intelligent Assembly Cell. Applied Mechanics and Materials, 2012, 220-223, 1825-1828.	0.2	0
28	Application of Assembly System Partial Units for the Development of Intelligent Assembly Cell. Applied Mechanics and Materials, 0, 309, 3-11.	0.2	0
29	The Hardware Devices in the Workspace of Intelligent Assembly Cell. Applied Mechanics and Materials, 2013, 365-366, 684-687.	0.2	Ο
30	The Writing Principle of Activity of Individual Devices in Intelligent Production Systems. Applied Mechanics and Materials, 2013, 309, 147-153.	0.2	0
31	The Sensory Devices in the Assembly Workspace of an Intelligent Assembly Cell . Applied Mechanics and Materials, 0, 474, 109-114.	0.2	Ο
32	Evaluations of the voice to text transfer in different conditions. MATEC Web of Conferences, 2019, 290, 08009.	0.1	0
33	The Automation Equipment in the Palletizing Workplace in the Intelligent Assembly Cell. Annals of DAAAM & Proceedings, 2012, , 0293-0296.	0.1	0
34	Automated Assembly Cell Conception Design. Lecture Notes in Electrical Engineering, 2012, , 85-92.	0.3	0