Fagen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/693863/publications.pdf

Version: 2024-02-01

94433 144013 3,365 64 37 57 h-index citations g-index papers 65 65 65 2791 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Room temperature HCHO oxidation over the Pt/CeO2 catalysts with different oxygen mobilities by changing ceria shapes. Applied Catalysis A: General, 2022, 630, 118469.	4.3	31
2	Ammonia from Photothermal N ₂ Hydrogenation over Ni/TiO ₂ Catalysts under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 115-123.	6.7	33
3	Alloying Ni–Cu Nanoparticles Encapsulated in SiO ₂ Nanospheres for Synergistic Catalysts in CO ₂ Reforming with Methane Reaction. ACS Applied Materials & Interfaces, 2022, 14, 23487-23495.	8.0	39
4	Design Strategy, Synthesis, and Mechanism of Ni Catalysts for Methane Dry Reforming Reaction: Recent Advances and Future Perspectives. Energy & Energy & 2022, 36, 5594-5621.	5.1	35
5	CeO ₂ Nanorods Decorated with Pt Nanoparticles as Catalysts for Oxidative Elimination of Formaldehyde. ACS Applied Nano Materials, 2022, 5, 10036-10046.	5.0	24
6	Ni/SiO ₂ Catalyst Prepared by Strong Electrostatic Adsorption for a Low-Temperature Methane Dry Reforming Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 3324-3333.	3.7	67
7	Optimizing the Ni/Cu Ratio in Ni–Cu Nanoparticle Catalysts for Methane Dry Reforming. ACS Applied Nano Materials, 2021, 4, 5340-5348.	5.0	61
8	Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst. Fuel, 2021, 291, 120182.	6.4	119
9	Understanding the key role of vanadium in p-type BiVO4 for photoelectrochemical N2 fixation. Chemical Engineering Journal, 2021, 414, 128773.	12.7	50
10	Confining Ni and ceria in silica shell as synergistic multifunctional catalyst for methane dry reforming reaction. Journal of Power Sources, 2021, 506, 230232.	7.8	46
11	Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chemical Engineering Journal, 2021, 421, 129989.	12.7	103
12	Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts. Catalysis Today, 2020, 355, 502-511.	4.4	46
13	Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst. Research on Chemical Intermediates, 2020, 46, 1735-1748.	2.7	37
14	Amorphous MnCO ₃ /C Double Layers Decorated on BiVO ₄ Photoelectrodes to Boost Nitrogen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52763-52770.	8.0	35
15	Ultra-small CeO ₂ nanoparticles supported on SiO ₂ for indoor formaldehyde oxidation at low temperature. Catalysis Science and Technology, 2020, 10, 6701-6712.	4.1	25
16	Effect of Calcination Temperature on the Performance of the Ni@SiO ₂ Catalyst in Methane Dry Reforming. Industrial & Engineering Chemistry Research, 2020, 59, 13370-13379.	3.7	76
17	Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochimica Acta, 2020, 349, 136383.	5.2	72
18	Efficient elimination of formaldehyde over Pt/Fe3O4 catalyst at room temperature. Journal of Environmental Chemical Engineering, 2020, 8, 104041.	6.7	23

#	Article	IF	CITATIONS
19	Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel, 2020, 278, 118333.	6.4	43
20	Low Temperature CO ₂ Reforming with Methane Reaction over CeO ₂ -Modified Ni@SiO ₂ Catalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35022-35034.	8.0	99
21	Ag-Pi/BiVO4 heterojunction with efficient interface carrier transport for photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2020, 579, 619-627.	9.4	35
22	Effects of the fabrication strategy on the catalytic performances of Co–Ni bimetal ordered mesoporous catalysts toward CO ₂ methanation. Sustainable Energy and Fuels, 2019, 3, 3038-3049.	4.9	19
23	CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction. Fuel, 2019, 256, 115954.	6.4	81
24	CO Oxidation over Metal Oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) Doped CuO-Based Catalysts Supported on Mesoporous Ce0.8Zr0.2O2 with Intensified Low-Temperature Activity. Catalysts, 2019, 9, 724.	3.5	14
25	Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science and Technology, 2019, 9, 5605-5625.	4.1	19
26	Embedded Ni catalysts in Ni-O-Ce solid solution for stable hydrogen production from ethanol steam reforming reaction. Fuel Processing Technology, 2019, 193, 94-101.	7.2	54
27	Comparison of the Promoted CuZnMxOy (M: Ga, Fe) Catalysts for CO2 Hydrogenation to Methanol. Catalysis Letters, 2019, 149, 2508-2518.	2.6	16
28	Confined growth of Co–Pi co-catalyst by organic semiconductor polymer for boosting the photoelectrochemical performance of BiVO ₄ . New Journal of Chemistry, 2019, 43, 8160-8167.	2.8	9
29	In Situ Decorating Coordinatively Unsaturated Fe Sites for Boosting Water Oxidation Performance of TiO 2 Photoanode. Energy Technology, 2019, 7, 1801128.	3.8	20
30	Flame Reduced TiO ₂ Nanorod Arrays with Ag Nanoparticle Decoration for Efficient Solar Water Splitting. Industrial & Engineering Chemistry Research, 2019, 58, 4818-4827.	3.7	32
31	Reasonable regulation of kinetics over BiVO4 photoanode by Fe–CoP catalysts for boosting photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 28184-28193.	7.1	33
32	In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system. Chemical Engineering Journal, 2019, 362, 349-356.	12.7	121
33	Preparation of WO3 thin films by dip film-drawing for photoelectrochemical performance. Chinese Journal of Chemical Engineering, 2019, 27, 1207-1211.	3.5	2
34	In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode. Chemical Engineering Journal, 2019, 358, 658-665.	12.7	81
35	CO 2 reforming with methane over small-sized Ni@SiO 2 catalysts with unique features of sintering-free and low carbon. Applied Catalysis B: Environmental, 2018, 235, 26-35.	20.2	148
36	Boosting Water Splitting Performance of BiVO ₄ Photoanode through Selective Surface Decoration of Ag ₂ S. ChemCatChem, 2018, 10, 4927-4933.	3.7	35

#	Article	IF	Citations
37	Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting. International Journal of Hydrogen Energy, 2018, 43, 16566-16572.	7.1	46
38	Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts. Applied Catalysis A: General, 2018, 564, 226-233.	4.3	44
39	Ni-MOF <i>in-situ</i> Decorating ZnO photoelectrode for photoelectrochemical water splitting. Functional Materials Letters, 2018, 11, 1850085.	1.2	12
40	CO2 methanation over Co Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy, 2018, 43, 17172-17184.	7.1	80
41	Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catalysis Today, 2017, 281, 295-303.	4.4	75
42	Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO 2 reforming of CH 4. Journal of CO2 Utilization, 2017, 18, 1-14.	6.8	52
43	Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets. Fuel, 2017, 203, 419-429.	6.4	72
44	Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO ₂ methanation. RSC Advances, 2017, 7, 18199-18210.	3.6	46
45	CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity. International Journal of Hydrogen Energy, 2017, 42, 15523-15539.	7.1	105
46	CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier. Journal of CO2 Utilization, 2017, 21, 200-210.	6.8	68
47	Thermally stable Ir/Ce0.9La0.1O2 catalyst for high temperature methane dry reforming reaction. Nano Research, 2017, 10, 364-380.	10.4	61
48	Carbon Dioxide Reforming of Methane over Cobaltâ€Nickel Bimetalâ€Doped Ordered Mesoporous Alumina Catalysts with Advanced Catalytic Performances. ChemCatChem, 2016, 8, 2536-2548.	3.7	36
49	Syngas production from CO2 reforming with methane over core-shell Ni@SiO2 catalysts. Journal of CO2 Utilization, 2016, 16, 318-327.	6.8	75
50	CO ₂ methanation over a Ni based ordered mesoporous catalyst for the production of synthetic natural gas. RSC Advances, 2016, 6, 28489-28499.	3.6	58
51	Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Applied Catalysis B: Environmental, 2016, 180, 511-520.	20.2	103
52	One-step synthesis of ordered mesoporous CoAl ₂ O ₄ spinel-based metal oxides for CO ₂ reforming of CH ₄ . RSC Advances, 2015, 5, 48256-48268.	3.6	41
53	Catalytic oxidation of low-concentration CO at ambient temperature over supported Pdâ€'Cu catalysts. Environmental Technology (United Kingdom), 2014, 35, 347-354.	2,2	21
54	Low temperature CO catalytic oxidation over supported Pd–Cu catalysts calcined at different temperatures. Chemical Engineering Journal, 2014, 242, 10-18.	12.7	37

#	Article	IF	CITATION
55	From mechanistic to kinetic analyses of ethanol steam reforming over Ir/CeO 2 catalyst. International Journal of Hydrogen Energy, 2014, 39, 18005-18015.	7.1	32
56	Preparation of Palladium Supported on Ferric Oxide Nano-catalysts for Carbon Monoxide Oxidation in Low Temperature. Nano-Micro Letters, 2014, 6, 233-241.	27.0	23
57	Rh/CeO2-SiC as a catalyst in partial oxidation of ethanol for hydrogen production. Chinese Journal of Catalysis, 2014, 34, 257-262.	14.0	O
58	Ageing analysis of a model Ir/CeO2 catalyst in ethanol steam reforming. Applied Catalysis B: Environmental, 2012, 125, 546-555.	20.2	37
59	Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis. Journal of Catalysis, 2012, 286, 137-152.	6.2	89
60	Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. International Journal of Hydrogen Energy, 2011, 36, 13566-13574.	7.1	65
61	Influence of Au particle size on Au/CeO2 catalysts for CO oxidation. Catalysis Today, 2011, 175, 541-545.	4.4	54
62	Hydrogen production from ethanol steam reforming in a micro-channel reactor. International Journal of Hydrogen Energy, 2010, 35, 1152-1159.	7.1	88
63	Ethanol steam reforming over Ni and Ni–Cu catalysts. Catalysis Today, 2009, 146, 31-36.	4.4	86
64	Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catalysis Today, 2008, 138, 152-156.	4.4	75