
Krzysztof Strzelec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/693851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-Link Density, Mechanical and Thermal Properties of Chloroprene Rubber Cross-Linked with Silver(I) Oxide. Materials, 2022, 15, 2006.	1.3	3
2	Antioxidant and Anti–Aging Activity of Freeze–Dried Alcohol–Water Extracts from Common Nettle (Urtica dioica L.) and Peppermint (Mentha piperita L.) in Elastomer Vulcanizates. Polymers, 2022, 14, 1460.	2.0	5
3	Flame retardant and durable chloroprene rubber and styrene-butadiene rubber blends crosslinked with copper(I) oxide. Iranian Polymer Journal (English Edition), 2021, 30, 149-165.	1.3	8
4	Curing Behaviors, Mechanical and Dynamic Properties of Composites Containing Chloroprene and Butadiene Rubbers Crosslinked with Nano-Iron(III) Oxide. Polymers, 2021, 13, 853.	2.0	6
5	Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers, 2021, 13, 799.	2.0	17
6	Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties. Materials, 2021, 14, 1414.	1.3	12
7	Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites. Materials, 2021, 14, 1616.	1.3	12
8	Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones. International Journal of Molecular Sciences, 2021, 22, 4757.	1.8	14
9	Natural Rubber Biocomposites Filled with Phyto-Ashes Rich in Biogenic Silica Obtained from Wheat Straw and Field Horsetail. Polymers, 2021, 13, 1177.	2.0	3
10	Chlorine-Functional Silsesquioxanes (POSS-Cl) as Effective Flame Retardants and Reinforcing Additives for Rigid Polyurethane Foams. Molecules, 2021, 26, 3979.	1.7	10
11	Potential Application of Peppermint (Mentha piperita L.), German Chamomile (Matricaria chamomilla L.) and Yarrow (Achillea millefolium L.) as Active Fillers in Natural Rubber Biocomposites. International Journal of Molecular Sciences, 2021, 22, 7530.	1.8	16
12	The Use of Copper Oxides as Cross-Linking Substances for Chloroprene Rubber and Study of the Vulcanizates Properties. Part I. Materials, 2021, 14, 5535.	1.3	4
13	Straw/Nano-Additive Hybrids as Functional Fillers for Natural Rubber Biocomposites. Materials, 2021, 14, 321.	1.3	12
14	Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. International Journal of Molecular Sciences, 2021, 22, 11203.	1.8	12
15	Vermiculite Filler Modified with Casein, Chitosan, and Potato Protein as a Flame Retardant for Polyurethane Foams. International Journal of Molecular Sciences, 2021, 22, 10825.	1.8	15
16	The Use of Copper Oxides as Cross-Linking Substances for Chloroprene Rubber and Study of the Vulcanizates Properties. Part II. The Effect of Filler Type on the Properties of CR Products. Materials, 2021, 14, 6528.	1.3	3
17	The effect of metal oxide on the cure, morphology, thermal and mechanical characteristics of chloroprene and butadiene rubber blends. Polymer Bulletin, 2020, 77, 4131-4146.	1.7	11
18	The potential application of cereal straw as a bio-filler for elastomer composites. Polymer Bulletin, 2020, 77, 2021-2038.	1.7	27

#	Article	IF	CITATIONS
19	Properties of Chemically Modified (Selected Silanes) Lignocellulosic Filler and Its Application in Natural Rubber Biocomposites. Materials, 2020, 13, 4163.	1.3	28
20	Anti-Oxidative Activity of Alcohol-Water Extracts from Field Horsetail (Equisteum arvense) in Elastomer Vulcanizates Subjected to Accelerated Aging Processes. Materials, 2020, 13, 4903.	1.3	11
21	New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams. Applied Sciences (Switzerland), 2020, 10, 5817.	1.3	21
22	Study on the Effect of Zinc on the Rheological, Mechanical and Thermal Properties and Fire Hazard of Unfilled and Filled CR/BR Vulcanizates. Polymers, 2020, 12, 2904.	2.0	5
23	Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties. Materials, 2020, 13, 1108.	1.3	50
24	Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites. Materials, 2020, 13, 2526.	1.3	18
25	Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Properties. Materials, 2020, 13, 1598.	1.3	4
26	Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives, Part 2: Flammability, Thermo-Oxidative Aging Resistance, Mechanical and Barrier Properties. Materials, 2020, 13, 1608.	1.3	1
27	Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 1781.	1.3	36
28	Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polymer Testing, 2020, 87, 106511.	2.3	55
29	The role of iron(III) oxide in chloroprene and butadiene rubber blends' cross-linking, structure, thermal and mechanical characteristics. Iranian Polymer Journal (English Edition), 2019, 28, 313-323.	1.3	12
30	POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers, 2019, 11, 1092.	2.0	25
31	Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillers. Polymers, 2019, 11, 972.	2.0	60
32	Thermoplastic Elastomer Biocomposites Filled with Cereal Straw Fibers Obtained with Different Processing Methods—Preparation and Properties. Polymers, 2019, 11, 641.	2.0	18
33	Effect of antioxidants on aging of the chloroprene rubber/butadiene rubber (CR/BR) blends. International Journal of Polymer Analysis and Characterization, 2019, 24, 475-486.	0.9	14
34	Moisture-mechanical performance improvement of thermal insulating polyurethane using paper production waste particles grafted with different coupling agents. Construction and Building Materials, 2019, 208, 525-534.	3.2	15
35	Reinforced, Extruded, Isotropic Magnetic Elastomer Composites: Fabrication and Properties. Advances in Polymer Technology, 2019, 2019, 1-11.	0.8	5
36	Composites of Rigid Polyurethane Foams Reinforced with POSS. Polymers, 2019, 11, 336.	2.0	36

#	Article	IF	CITATIONS
37	Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer Testing, 2019, 75, 12-25.	2.3	45
38	Hybrid Straw/Perlite Reinforced Natural Rubber Biocomposites. Journal of Bionic Engineering, 2019, 16, 1127-1142.	2.7	7
39	POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2019, 76, 3387-3402.	1.7	15
40	Cereal straw and their physical modifications with hydrophilic and hydrophobic silica – The influence of functional hybrid material on natural rubber biocomposites. European Polymer Journal, 2019, 112, 176-185.	2.6	8
41	Silanized cereal straw as a novel, functional filler of natural rubber biocomposites. Cellulose, 2019, 26, 1025-1040.	2.4	21
42	Curing and properties of chloroprene and butadiene rubber (CR/BR) blends cross-linked with copper(I) oxide or copper(II) oxide. International Journal of Polymer Analysis and Characterization, 2019, 24, 18-31.	0.9	12
43	New elastomeric blend swith increased resistance to flame. Polimery, 2019, 64, 43-49.	0.4	3
44	The use of rye, oat and triticale straw as fillers of natural rubber composites. Polymer Bulletin, 2018, 75, 4607-4626.	1.7	22
45	Recycable complex catalysts immobilized on mercaptan-functionalized glass-polymer supports. Polymer Bulletin, 2018, 75, 5421-5436.	1.7	1
46	Rigid polyurethane foams reinforced with industrial potato protein. Polymer Testing, 2018, 68, 135-145.	2.3	84
47	Linseed oil as a natural modifier of rigid polyurethane foams. Industrial Crops and Products, 2018, 115, 40-51.	2.5	60
48	Influence of wheat, rye, and triticale straw on the properties of natural rubber composites. Advances in Polymer Technology, 2018, 37, 2866-2878.	0.8	17
49	Polythiourethane microcapsules as novel self-healing systems for epoxy coatings. Polymer Bulletin, 2018, 75, 149-165.	1.7	19
50	Influence of Lignocellulose Fillers on Properties Natural Rubber Composites. Journal of Polymers and the Environment, 2018, 26, 2489-2501.	2.4	24
51	Thermally induced self-healing epoxy/glass laminates with porous layers containing crystallized healing agent. EXPRESS Polymer Letters, 2018, 12, 640-648.	1.1	9
52	Natural Rubber Composites Filled with Cereals Straw Modified with Acetic and Maleic Anhydride: Preparation and Properties. Journal of Polymers and the Environment, 2018, 26, 4141-4157.	2.4	29
53	Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polymer Testing, 2018, 72, 32-45.	2.3	61
54	Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polymer Testing, 2018, 69, 225-237.	2.3	65

#	Article	IF	CITATIONS
55	Influence of peroxide modifications on the properties of cereal straw and natural rubber composites. Cellulose, 2018, 25, 4711-4728.	2.4	13
56	Properties of Natural Rubber Biocomposities Filled with Alkaline Modified Oat Straw. Journal of Renewable Materials, 2018, 6, 746-754.	1.1	1
57	Effect of Accelerated Curing Conditions on Shear Strength and Glass Transition Temperature of Epoxy Adhesives. Procedia Engineering, 2017, 193, 423-430.	1.2	11
58	Natural rubber biocomposites containing corn, barley and wheat straw. Polymer Testing, 2017, 63, 84-91.	2.3	45
59	Magnetic (ethylene-octene) elastomer composites obtained by extrusion. Polymer Engineering and Science, 2017, 57, 520-527.	1.5	4
60	Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite. Polish Journal of Chemical Technology, 2016, 18, 89-96.	0.3	1
61	New palladium catalyst immobilized on epoxy resin: synthesis, characterization and catalytic activity. Applied Organometallic Chemistry, 2016, 30, 4-11.	1.7	4
62	Polysiloxane microspheres functionalized with imidazole groups as a palladium catalyst support. Applied Organometallic Chemistry, 2016, 30, 399-407.	1.7	12
63	Platinum complex catalysts immobilized on epoxy resins cured with polythiourethane hardeners. Open Chemistry, 2015, 13, .	1.0	2
64	Thiirane resins cured with polythiourethane hardeners as novel supports for metal complex catalysts. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
65	Palladium complex catalyst immobilized on epoxy support under supercritical conditions. Comptes Rendus Chimie, 2014, 17, 1080-1087.	0.2	2
66	Epoxy resins cured with ionic liquids as novel supports for metal complex catalysts. Comptes Rendus Chimie, 2013, 16, 752-760.	0.2	12
67	Hydrogenation of cinnamaldehyde over supported palladium catalysts. Polish Journal of Chemical Technology, 2013, 15, 28-32.	0.3	2
68	Magnetic recykling of complex catalysts immobilized on thiol-functionalized polymer supports. Polish Journal of Chemical Technology, 2013, 15, 65-68.	0.3	4
69	Synthesis and characterization of novel polythiourethane hardeners for epoxy resins. Comptes Rendus Chimie, 2012, 15, 1065-1071.	0.2	26
70	Rhodium(I) complex catalyst immobilized on terpolymers of <i>N</i> â€vinylpyrrolidinone and 1â€vinylimidazole. Journal of Applied Polymer Science, 2012, 124, 3538-3546.	1.3	3
71	Terpolymers of N-vinylpyrrolidinone and 1-vinylimidazole as new supports for palladium nanocluster catalysts. E-Polymers, 2011, 11, .	1.3	0
72	Soluble polysiloxane-supported palladium catalysts for the Mizoroki–Heck reaction. Journal of Molecular Catalysis A, 2010, 319, 30-38.	4.8	32

#	Article	IF	CITATIONS
73	Effect of polythiourethane hardener modification on the behaviour of epoxy resin. Journal of Polymer Research, 2009, 16, 401-409.	1.2	4
74	Soluble Alkylthiopolysiloxane-Supported Palladium Catalysts for the Heck Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1586-1598.	0.8	7
75	Improvement of mechanical properties and electrical conductivity of polythiourethane-modified epoxy coatings filled with aluminium powder. Progress in Organic Coatings, 2008, 63, 133-138.	1.9	20
76	Studies on the properties of epoxy resins cured with polythiourethanes. International Journal of Adhesion and Adhesives, 2007, 27, 92-101.	1.4	20
77	Modifications of siloxane polymers. Polimery, 2007, 52, 496-502.	0.4	2
78	New polythiourethane hardeners for epoxy resins. Polymer International, 2005, 54, 1337-1344.	1.6	24
79	CHEMICAL DOPING OF TRIPHENYLAMINE-BENZALDEHYDE POLYMERS. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 799-807.	1.8	2
80	Synthesis of charge transporting polymer containing TPD units using Friedel–Crafts reaction. Synthetic Metals, 2002, 126, 165-171.	2.1	13
81	Preparation of New Hole Transport Polymers via Copolymerization ofN,NÂ′-Diphenyl-N,N′-bis(4-alkylphenyl)benzidine (TPD) Derivatives with 1,4-Divinylbenzene. Macromolecular Chemistry and Physics, 2002, 203, 739-747.	1.1	24
82	Oxidative Coupling Copolymerization of 4-Methyltriphenylamine with Arenes. Macromolecular Chemistry and Physics, 2002, 203, 2488-2494.	1.1	6
83	Rhodium(I) complex catalysts immobilized on polyamides having a pyridine moiety. Journal of Molecular Catalysis A, 2001, 177, 89-104.	4.8	26
84	Synthesis and characterization of new 4-tolyldiphenylamine derivatives for hole transporting polymers. Polymer International, 2001, 50, 1228-1233.	1.6	10
85	Synthesis, characterization and X-ray structures of the model ligand for a coordination polymer: diethyl-2,6-pyridine dicarboxamide and its complex with PdCl2. Inorganica Chimica Acta, 2001, 319, 229-234.	1.2	10
86	Hydrosilylation of phenylacetylene catalyzed by metal complex catalysts supported on polyamides containing a pyridine moiety. Journal of Molecular Catalysis A, 2000, 156, 91-102.	4.8	43
87	Synthesis and physicochemical characterization of polymeric supports and polymer-supported rhodium catalysts based on polyamides having a pyridine moiety. Reactive and Functional Polymers, 2000, 44, 189-199.	2.0	13
88	Selective addition of hydrosilanes to 1,3-dienes catalyzed by polyamide-supported metal complex catalysts. Journal of Organometallic Chemistry, 1995, 496, 19-26.	0.8	33
89	Selectivity of polyamide-supported rhodium catalysts in the addition of hydrosilanes to vinyl compounds. Reactive & Functional Polymers, 1994, 23, 85-93.	0.8	14