Benedek Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938503/publications.pdf

Version: 2024-02-01

623734 642732 1,101 149 14 23 citations g-index h-index papers 159 159 159 314 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A comparison of digitized rotations of neighborhood motion maps of closest neighbors on 2D regular grids. Signal, Image and Video Processing, 2022, 16, 505-513.	2.7	4
2	\$\$5'ightarrow 3'\$\$ Watsonâ€"Crick automata languages-without sensing parameter. Natural Computing, 2022, 21, 679-691.	3.0	2
3	A jumping \$\$5'ightarrow 3'\$\$ Watson–Crick finite automata model. Acta Informatica, 2022, 59, 557-584.	0.5	3
4	A Comparison of Various Extensions of Strong Truthteller and Strong Liar Puzzles (Mutes and) Tj ETQq0 0 0 rgB1	Overlocl	₹ 18 Tf 50 622
5	On deterministic sensing \$\$5'ightarrow 3'\$\$ Watsonâ€"Crick finite automata: a full hierarchy in 2detLIN. Acta Informatica, 2021, 58, 153-175.	0.5	8
6	Digital Geometry on the Dual of Some Semi-regular Tessellations. Lecture Notes in Computer Science, 2021, , 283-295.	1.3	6
7	Reaction Systems for Modeling and Validation of Biological Signaling Pathways: G1/S Checkpoint of the Cell Cycle. Acta Polytechnica Hungarica, 2021, 18, 7-23.	2.9	6
8	Operational union-complexity. Information and Computation, 2021, , 104692.	0.7	2
9	Discrete Optimization: The Case of Generalized BCC Lattice. Mathematics, 2021, 9, 208.	2.2	4
10	On deterministic 1-limited 5′ → 3′ sensing Watson–Crick finite-state transducers. RAIRO - Theoretical Informatics and Applications, 2021, 55, 5.	0.5	2
11	A Genetic Algorithm for the Minimum Vertex Cover Problem with Interval-Valued Fitness. Acta Polytechnica Hungarica, 2021, 18, 105-123.	2.9	3
12	Vector Arithmetic in the Triangular Grid. Entropy, 2021, 23, 373.	2.2	1
13	Union-Freeness Revisited â€" Between Deterministic and Nondeterministic Union-Free Languages. International Journal of Foundations of Computer Science, 2021, 32, 551-573.	1.1	1
14	On Chamfer Distances on the Square and Body-Centered Cubic Grids: An Operational Research Approach. Mathematical Problems in Engineering, 2021, 2021, 1-9.	1.1	4
15	Distance on the Cairo pattern. Pattern Recognition Letters, 2021, 145, 141-146.	4.2	8
16	State-deterministic \$\$5'ightarrow 3'\$\$ Watson-Crick automata. Natural Computing, 2021, 20, 725-737.	3.0	3
17	Circular Interval-valued Computers and Simulation of (Red-green) Turing Machines. Fundamenta Informaticae, 2021, 181, 213-238.	0.4	0
18	Weighted distances on the truncated hexagonal grid. Pattern Recognition Letters, 2021, 152, 26-33.	4.2	5

#	Article	IF	CITATIONS
19	Resolvable Networks—A Graphical Tool for Representing and Solving SAT. Mathematics, 2021, 9, 2597.	2.2	O
20	On disks of the triangular grid: An application of optimization theory in discrete geometry. Discrete Applied Mathematics, 2020, 282, 136-151.	0.9	1
21	Mathematical Morphology on the Triangular Grid: The Strict Approach. SIAM Journal on Imaging Sciences, 2020, 13, 1367-1385.	2.2	8
22	Digitized rotations of 12 neighbors on the triangular grid. Annals of Mathematics and Artificial Intelligence, 2020, 88, 833-857.	1.3	5
23	On the Number of Shortest Weighted Paths in a Triangular Grid. Mathematics, 2020, 8, 118.	2.2	2
24	Binary tomography on the isometric tessellation involving pixel shape orientation. IET Image Processing, 2020, 14, 25-30.	2.5	6
25	Bijective, Non-Bijective and Semi-Bijective Translations on the Triangular Plane. Mathematics, 2020, 8, 29.	2.2	9
26	On the Membership Problem of Permutation Grammars â€" A Direct Proof of NP-Completeness. International Journal of Foundations of Computer Science, 2020, 31, 515-525.	1.1	0
27	<pre><mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:mrow></mml:mrow><td>nml:ຄາ⊚>â€</td><td>² < /5mml:mo></td></mml:math></pre>	nml :ຄ າ⊚>â€	² < / 5mml:mo>
28	Truth-Teller–Liar Puzzles with Self-Reference. Mathematics, 2020, 8, 190.	2.2	3
29	Linear automata with translucent letters and linear context-free trace languages. RAIRO - Theoretical Informatics and Applications, 2020, 54, 3.	0.5	8
30	On the number of shortest paths by neighborhood sequences on the square grid. Miskolc Mathematical Notes, 2020, 21, 287.	0.6	2
31	Counting the Number of Shortest Chamfer Paths in the Square Grid. Acta Polytechnica Hungarica, 2020, 17, 67-87.	2.9	2
32	Union-Freeness, Deterministic Union-Freeness and Union-Complexity. Lecture Notes in Computer Science, 2019, , 46-56.	1.3	4
33	A Continuous Coordinate System for the Plane by Triangular Symmetry. Symmetry, 2019, 11, 191.	2.2	13
34	Chamfer distances on the isometric grid: a structural description of minimal distances based on linear programming approach. Journal of Combinatorial Optimization, 2019, 38, 867-886.	1.3	6
35	Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Research, 2019, 47, 2778-2792.	14.5	14
36	On the Angles of Change of the Neighborhood Motion Maps on the Triangular Grid. , 2019, , .		4

#	Article	IF	Citations
37	Regularized binary tomography on the hexagonal grid. Physica Scripta, 2019, 94, 025201.	2.5	15
38	Lazy evaluations in Åukasiewicz type fuzzy logic. Fuzzy Sets and Systems, 2019, 376, 127-151.	2.7	2
39	Two-Head Finite-State Acceptors with Translucent Letters. Lecture Notes in Computer Science, 2019, , 406-418.	1.3	5
40	Distance Transform Based on Weight Sequences. Lecture Notes in Computer Science, 2019, , 62-74.	1.3	3
41	Generalised distances of sequences II: B-distances with weight sequences. Filomat, 2019, 33, 5803-5812.	0.5	0
42	Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2018, 26, 169-187.	0.3	3
43	Non-bijective translations on the triangular plane. , 2018, , .		3
44	Distance Functions Based on Multiple Types of Weighted Steps Combined with Neighborhood Sequences. Journal of Mathematical Imaging and Vision, 2018, 60, 1209-1219.	1.3	5
45	Preface: Non-classical models of automata and applications VIII. RAIRO - Theoretical Informatics and Applications, 2018, 52, 87-88.	0.5	0
46	A description of the diamond grid for topological and combinatorial analysis. Graphical Models, 2018, 100, 33-50.	2.4	1
47	Dilation and Erosion on the Triangular Tessellation: An Independent Approach. IEEE Access, 2018, 6, 23108-23119.	4.2	16
48	Deterministic Sensing \$\$5'ightarrow 3'\$\$5′â†'3′ Watson-Crick Automata Without Sensing Parameter. Lecture Notes in Computer Science, 2018, , 173-187.	1.3	7
49	A Class of 2-Head Finite Automata for Linear Languages. Triangle, 2018, , 89.	0.0	2
50	Binary Tomography on Triangular Grid Involving Hexagonal Grid Approach. Lecture Notes in Computer Science, 2018, , 68-81.	1.3	2
51	Digitized Rotations of Closest Neighborhood on the Triangular Grid. Lecture Notes in Computer Science, 2018, , 53-67.	1.3	5
52	An Extension of Interval-Valued Computing Equivalent to Red-Green Turing Machines. Lecture Notes in Computer Science, 2018, , 137-152.	1.3	0
53	Generalised distances of sequences I: \$B\$-distances. Miskolc Mathematical Notes, 2018, 19, 397.	0.6	0
54	Application of neighborhood sequences in communication of hexagonal networks. Discrete Applied Mathematics, 2017, 216, 424-440.	0.9	9

#	Article	IF	CITATIONS
55	Weighted Distances and Digital Disks on the Khalimsky Grid. Journal of Mathematical Imaging and Vision, 2017, 59, 2-22.	1.3	11
56	Concepts of Binary Morphological Operations Dilation and Erosion on the Triangular Grid. Lecture Notes in Computer Science, 2017, , 89-104.	1.3	1
57	A Shift-free Characterization of NP within Interval-valued Computing. Fundamenta Informaticae, 2017, 155, 187-207.	0.4	2
58	Preface / Editorial. Fundamenta Informaticae, 2017, 155, v-vii.	0.4	0
59	Memetic algorithms for reconstruction of binary images on triangular grids with 3 and 6 projections. Applied Soft Computing Journal, 2017, 52, 549-565.	7.2	14
60	Weighted Distances on the Trihexagonal Grid. Lecture Notes in Computer Science, 2017, , 82-93.	1.3	4
61	An Integer Programming Approach to Characterize Digital Disks on the Triangular Grid. Lecture Notes in Computer Science, 2017, , 94-106.	1.3	3
62	Trajectories and Traces on Non-traditional Regular Tessellations of the Plane. Lecture Notes in Computer Science, 2017, , 16-29.	1.3	5
63	Fast evaluations in product logic various pruning techniques. , 2016, , .		1
64	Wiener index on rows of unit cells of the face-centred cubic lattice. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, 243-249.	0.1	11
65	A topological coordinate system for the diamond cubic grid. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, 570-581.	0.1	9
66	A combinatorial coordinate system for the body-centered cubic grid. Graphical Models, 2016, 87, 11-22.	2.4	11
67	Dense Projection Tomography on the Triangular Tiling. Fundamenta Informaticae, 2016, 145, 125-141.	0.4	13
68	A topological 4-coordinate system for the face centered cubic grid. Pattern Recognition Letters, 2016, 83, 67-74.	4.2	9
69	On periodic properties of circular words. Discrete Mathematics, 2016, 339, 1189-1197.	0.7	6
70	On Weighted Distances on the Khalimsky Grid. Lecture Notes in Computer Science, 2016, , 372-384.	1.3	6
71	Digital Disks by Weighted Distances in the Triangular Grid. Lecture Notes in Computer Science, 2016, , 385-397.	1.3	5
72	Number of Words Characterizing Digital Balls on the Triangular Tiling. Lecture Notes in Computer Science, 2016, , 31-44.	1.3	4

#	Article	IF	Citations
73	Comparing memetic and simulated annealing approaches for discrete tomography on the triangular grid., 2015,,.		1
74	Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid. Lecture Notes in Computer Science, 2015, , 597-606.	1.3	3
75	A combinatorial 3-coordinate system for the face centered cubic grid. , 2015, , .		4
76	Finiteness of chain-code picture languages on the triangular grid. , 2015, , .		3
77	Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Annals of Mathematics and Artificial Intelligence, 2015, 75, 117-134.	1.3	34
78	Number of Shortest Paths in Triangular Grid for 1- and 2-Neighborhoods. Lecture Notes in Computer Science, 2015, , 115-124.	1.3	5
79	Short Circuit Evaluations in Gödel Type Logic. Advances in Intelligent Systems and Computing, 2015, , 119-138.	0.6	3
80	A Characterization of NP Within Interval-Valued Computing. Lecture Notes in Computer Science, 2015, , 164-179.	1.3	1
81	Finite Automata with Translucent Letters Applied in Natural and Formal Language Theory. Lecture Notes in Computer Science, 2014, , 107-127.	1.3	7
82	Generalized game trees and their evaluation. , 2014, , .		4
83	Binary Tomography on the Triangular Grid with 3 Alternative Directions - A Genetic Approach. , 2014, , .		3
84	Deterministic discrete tomography reconstruction by energy minimization method on the triangular grid. Pattern Recognition Letters, 2014, 49, 11-16.	4.2	19
85	Weighted Distances on a Triangular Grid. Lecture Notes in Computer Science, 2014, , 37-50.	1.3	15
86	A Graphical Representation of Boolean Logic. Lecture Notes in Computer Science, 2014, , 228-230.	1.3	2
87	Deterministic pushdown-CD-systems of stateless deterministic R(1)-automata. Acta Informatica, 2013, 50, 229-255.	0.5	2
88	Maximum flow minimum cost algorithm for reconstruction of images represented on the triangular grid. , $2013, \dots$		2
89	Globally deterministic CD-systems of stateless R-automata with window size 1. International Journal of Computer Mathematics, 2013, 90, 1254-1277.	1.8	11
90	Connection between interval-valued computing and cellular automata. , 2013, , .		2

#	Article	IF	CITATIONS
91	Isoperimetrically optimal polygons in the triangular grid with Jordan-type neighbourhood on the boundary. International Journal of Computer Mathematics, 2013, 90, 1629-1652.	1.8	9
92	Discrete tomography on the triangular grid based on Ryser's results. , 2013, , .		3
93	Reconstruction of Binary Images Represented on Equilateral Triangular Grid Using Evolutionary Algorithms. Advances in Intelligent Systems and Computing, 2013, , 561-571.	0.6	7
94	A Weight Sequence Distance Function. Lecture Notes in Computer Science, 2013, , 292-301.	1.3	11
95	On Efficient Algorithms for SAT. Lecture Notes in Computer Science, 2013, , 295-310.	1.3	2
96	On Union-Free and Deterministic Union-Free Languages. Lecture Notes in Computer Science, 2012, , 179-192.	1.3	5
97	Stateless multicounter 5′Â→Â3′ Watson–Crick automata: the deterministic case. Natural Computing, 20 11, 361-368.	12 3.b	9
98	On CD-systems of stateless deterministic R-automata with window size one. Journal of Computer and System Sciences, 2012, 78, 780-806.	1.2	16
99	Cellular Topology on the Triangular Grid. Lecture Notes in Computer Science, 2012, , 143-153.	1.3	11
100	Energy-Minimization Based Discrete Tomography Reconstruction Method for Images on Triangular Grid. Lecture Notes in Computer Science, 2012, , 274-284.	1.3	7
101	Optimization of the painting problem by a genetic approach using interval-values. , $2011, , .$		O
102	Hierarchies of Stateless Multicounter 5′ → 3′ Watson-Crick Automata Languages. Fundamenta Informaticae, 2011, 110, 111-123.	0.4	3
103	Digital distance functions on three-dimensional grids. Theoretical Computer Science, 2011, 412, 1350-1363.	0.9	90
104	Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theoretical Computer Science, 2011, 412, 1364-1377.	0.9	16
105	An Automata-Theoretical Characterization of Context-Free Trace Languages. Lecture Notes in Computer Science, 2011, , 406-417.	1.3	8
106	Globally Deterministic CD-Systems of Stateless R(1)-Automata. Lecture Notes in Computer Science, 2011, , 390-401.	1.3	8
107	Hierarchy Results on Stateless Multicounter 5′ → 3′ Watson-Crick Automata. Lecture Notes in Cor Science, 2011, , 465-472.	nputer 1.3	4
108	CD-systems of stateless deterministic $R(1)$ -automata governed by an external pushdown store. RAIRO - Theoretical Informatics and Applications, 2011, 45, 413-448.	0.5	3

#	Article	IF	CITATIONS
109	5′ → 3′ Watson-Crick AutomataWith Several Runs. Fundamenta Informaticae, 2010, 104, 71-91.	0.4	19
110	Effective computing by interval-values. , 2010, , .		2
111	On union-complexity of regular languages. , 2010, , .		5
112	Stateless multicounter 5& #x2032; & #x2192; 3& #x2032; Watson-Crick automata., 2010,,.		2
113	CD-Systems of Stateless Deterministic R(1)-Automata Accept All Rational Trace Languages. Lecture Notes in Computer Science, 2010, , 463-474.	1.3	14
114	ON A HIERARCHY OF PERMUTATION LANGUAGES., 2010,,.		2
115	DERIVATION TREES FOR CONTEXT-SENSITIVE GRAMMARS. , 2010, , .		2
116	Graphs of Grammars – Derivations as Parallel Processes. Studies in Computational Intelligence, 2010, , 1-13.	0.9	0
117	An Automata-Theoretic Characterization of the Chomsky-Hierarchy. Lecture Notes in Computer Science, 2010, , 361-372.	1.3	0
118	Isometric transformations of the dual of the hexagonal lattice. , 2009, , .		22
119	Neighborhood sequences in the diamond grid: Algorithms with two and three neighbors. International Journal of Imaging Systems and Technology, 2009, 19, 146-157.	4.1	8
120	Path-based distance functions in n-dimensional generalizations of the face- and body-centered cubic grids. Discrete Applied Mathematics, 2009, 157, 3386-3400.	0.9	7
121	Permutation Languages in Formal Linguistics. Lecture Notes in Computer Science, 2009, , 504-511.	1.3	2
122	Neighborhood Sequences in the Diamond Grid – Algorithms with Four Neighbors. Lecture Notes in Computer Science, 2009, , 109-121.	1.3	3
123	Neighborhood Sequences on nD Hexagonal/Face-Centered-Cubic Grids. Lecture Notes in Computer Science, 2009, 96-108 Distance with generalized neighbourhood sequences in <mml:math <="" altimg="si3.gif" display="inline" td=""><td>1.3</td><td>2</td></mml:math>	1.3	2
124	overnow= scroll xmins:xocs= http://www.eisevier.com/xmi/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	0.9	22
125	interval value o computal sons and upen connected table described by the connected table of tab	0.9	13
126	Science, 2008, 394, 200 222. NON-TRADITIONAL GRIDS EMBEDDED IN â,,\square\sup>n. International Journal of Shape Modeling, 2008, 14, 209-228.	0.2	26

#	Article	IF	CITATIONS
127	A Connection between â,, n and Generalized Triangular Grids. Lecture Notes in Computer Science, 2008, , 1157-1166.	1.3	15
128	Weighted Neighborhood Sequences in Non-standard Three-Dimensional Grids $\hat{a} \in \text{``Parameter Optimization.'}, 2008, , 51-62.$		4
129	Weighted Neighbourhood Sequences in Non-Standard Three-Dimensional Grids – Metricity and Algorithms. , 2008, , 201-212.		6
130	Theory of Neighborhood Sequences on Hexagonal Grids. Proc Int Symp Image Signal Process Anal, 2007, , .	0.0	2
131	Optimal Neighborhood Sequences on the Hexagonal Grid. Proc Int Symp Image Signal Process Anal, 2007, , .	0.0	4
132	Distances with neighbourhood sequences in cubic and triangular grids. Pattern Recognition Letters, 2007, 28, 99-109.	4.2	31
133	Distances based on neighbourhood sequences in non-standard three-dimensional grids. Discrete Applied Mathematics, 2007, 155, 548-557.	0.9	28
134	On 5′→3′ Sensing Watson-Crick Finite Automata. , 2007, , 256-262.		30
135	The power of programmed grammars with graphs from various classes. Journal of Applied Mathematics and Computing, 2006, 22, 21-38.	2.5	4
136	Approximating Euclidean Distance Using Distances Based on Neighbourhood Sequences in Non-standard Three-Dimensional Grids. Lecture Notes in Computer Science, 2006, , 89-100.	1.3	10
137	Reasoning by Intervals. Lecture Notes in Computer Science, 2006, , 145-147.	1.3	7
138	Generating Distance Maps with Neighbourhood Sequences. Lecture Notes in Computer Science, 2006, , 295-307.	1.3	6
139	Geometry of Neighborhood Sequences in Hexagonal Grid. Lecture Notes in Computer Science, 2006, , 53-64.	1.3	4
140	A Comparison Among Distances Based on Neighborhood Sequences in Regular Grids. Lecture Notes in Computer Science, 2005, , 1027-1036.	1.3	4
141	On the language equivalence of NE star-patterns. Information Processing Letters, 2005, 95, 396-400.	0.6	1
142	An algorithm to find the number of the digitizations of discs with a fixed radius. Electronic Notes in Discrete Mathematics, 2005, 20, 607-622.	0.4	13
143	Characterization of digital circles in triangular grid. Pattern Recognition Letters, 2004, 25, 1231-1242.	4.2	52
144	Calculating Distance with Neighborhood Sequences in the Hexagonal Grid. Lecture Notes in Computer Science, 2004, , 98-109.	1.3	7

#	Article	IF	CITATIONS
145	Crazy Truth-Teller–Liar Puzzles. Axiomathes, 0, , 1.	0.6	1
146	A New Sensing 5'â€">3' Watson-Crick Automata Concept. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 252, 195-204.	0.8	11
147	Prime factorization by interval-valued computing. Publicationes Mathematicae, 0, , 539-551.	0.2	5
148	Computing discrete logarithm by interval-valued paradigm. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 143, 76-86.	0.8	3
149	Representations of Circular Words. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 151, 261-270.	0.8	1