Volker Hessel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micromixers—a review on passive and active mixing principles. Chemical Engineering Science, 2005, 60, 2479-2501.	3.8	1,235
2	Chemistry in Microstructured Reactors. Angewandte Chemie - International Edition, 2004, 43, 406-446.	13.8	1,191
3	Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 2016, 116, 10276-10341.	47.7	1,166
4	Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. ChemSusChem, 2013, 6, 746-789.	6.8	521
5	Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45, 83-117.	38.1	421
6	Photochemical Transformations Accelerated in Continuousâ€Flow Reactors: Basic Concepts and Applications. Chemistry - A European Journal, 2014, 20, 10562-10589.	3.3	416
7	Micro-structured reactors for gas phase reactions. Chemical Engineering Journal, 2004, 98, 1-38.	12.7	397
8	Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry. Chemical Engineering and Technology, 2009, 32, 1655-1681.	1.5	374
9	Characterization of Mixing in Micromixers by a Test Reaction:Â Single Mixing Units and Mixer Arrays. Industrial & Engineering Chemistry Research, 1999, 38, 1075-1082.	3.7	370
10	An optimised split-and-recombine micro-mixer with uniform â€ [~] chaotic' mixing. Lab on A Chip, 2004, 4, 65-69.	6.0	326
11	Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. Journal of Fluorine Chemistry, 2000, 105, 117-128.	1.7	298
12	Gasâ^'Liquid and Gasâ^'Liquidâ^'Solid Microstructured Reactors:Â Contacting Principles and Applications. Industrial & Engineering Chemistry Research, 2005, 44, 9750-9769.	3.7	269
13	Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model. Renewable Energy, 2017, 101, 484-492.	8.9	265
14	Plasma N2-fixation: 1900–2014. Catalysis Today, 2015, 256, 49-66.	4.4	259
15	Laminar mixing in different interdigital micromixers: I. Experimental characterization. AICHE Journal, 2003, 49, 566-577.	3.6	237
16	Benchmarking of Microreactor Applications. Organic Process Research and Development, 2004, 8, 422-439.	2.7	202
17	Practical Photocatalytic Trifluoromethylation and Hydrotrifluoromethylation of Styrenes in Batch and Flow. Angewandte Chemie - International Edition, 2016, 55, 15549-15553.	13.8	171
18	A convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flow. Reaction Chemistry and Engineering, 2016, 1, 73-81.	3.7	166

#	Article	IF	CITATIONS
19	Liquid–liquid slug flow: Hydrodynamics and pressure drop. Chemical Engineering Science, 2011, 66, 42-54.	3.8	165
20	Metalâ€Free Photocatalytic Aerobic Oxidation of Thiols to Disulfides in Batch and Continuousâ€Flow. Advanced Synthesis and Catalysis, 2015, 357, 2180-2186.	4.3	164
21	Flow chemistry using milli- and microstructured reactors—From conventional to novel process windows. Bioorganic and Medicinal Chemistry, 2010, 18, 3707-3719.	3.0	158
22	Novel process windows – Concept, proposition and evaluation methodology, and intensified superheated processing. Chemical Engineering Science, 2011, 66, 1426-1448.	3.8	158
23	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2145-2157.	6.8	155
24	Low temperature plasma-catalytic NO x synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Applied Catalysis B: Environmental, 2016, 194, 123-133.	20.2	150
25	Rapid Trifluoromethylation and Perfluoroalkylation of Fiveâ€Membered Heterocycles by Photoredox Catalysis in Continuous Flow. ChemSusChem, 2014, 7, 1612-1617.	6.8	145
26	Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chemistry, 2015, 17, 2012-2026.	9.0	143
27	Utilization of Micromixers for Extraction Processes. Chemical Engineering and Technology, 2001, 24, 11-17.	1.5	141
28	Catalyst preparation and deactivation issues for nitrobenzene hydrogenation in a microstructured falling film reactor. Catalysis Today, 2003, 81, 641-651.	4.4	139
29	Chemical microprocess technology—from laboratory-scale to production. Chemical Engineering Science, 2004, 59, 4789-4794.	3.8	138
30	Liquid–Liquid Flow in a Capillary Microreactor: Hydrodynamic Flow Patterns and Extraction Performance. Industrial & Engineering Chemistry Research, 2012, 51, 1015-1026.	3.7	136
31	An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chemistry, 2017, 19, 4061-4066.	9.0	133
32	Carbon Dioxide Absorption in a Falling Film Microstructured Reactor:  Experiments and Modeling. Industrial & Engineering Chemistry Research, 2005, 44, 1742-1751.	3.7	123
33	Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chemical Engineering Journal, 2016, 284, 764-777.	12.7	121
34	Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid–liquid extraction processes. Chemical Engineering Journal, 2016, 283, 855-868.	12.7	114
35	Detailed Characterization of Various Porous Alumina-Based Catalyst Coatings Within Microchannels and Their Testing for Methanol Steam Reforming. Chemical Engineering Research and Design, 2003, 81, 721-729.	5.6	113
36	Propane steam reforming in micro-channels—results from catalyst screening and optimisation. Applied Catalysis A: General, 2004, 277, 155-166.	4.3	113

#	Article	IF	CITATIONS
37	Fluorinations, chlorinations and brominations of organic compounds in micro reactors. Journal of Fluorine Chemistry, 2004, 125, 1677-1694.	1.7	110
38	A mild and fast photocatalytic trifluoromethylation of thiols in batch and continuous-flow. Chemical Science, 2014, 5, 4768-4773.	7.4	109
39	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie - International Edition, 2017, 56, 1050-1054.	13.8	109
40	Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development: Use of Chemistry and Process Design as Intensification Fields. Chemical Engineering and Technology, 2012, 35, 1184-1204.	1.5	103
41	Organic Synthesis with Microstructured Reactors. Chemical Engineering and Technology, 2005, 28, 267-284.	1.5	102
42	Microchemical Engineering: Components, Plant Concepts User Acceptance - Part I. Chemical Engineering and Technology, 2003, 26, 13-24.	1.5	100
43	Ionic liquid synthesis in a microstructured reactor for process intensification. Chemical Engineering and Processing: Process Intensification, 2007, 46, 840-845.	3.6	100
44	Numbered-up gas–liquid micro/milli channels reactor with modular flow distributor. Chemical Engineering Journal, 2012, 207-208, 645-655.	12.7	100
45	Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing: Process Intensification, 2019, 140, 29-35.	3.6	99
46	Hydrodynamics and Mixer-Induced Bubble Formation in Micro Bubble Columns with Single and Multiple-Channels. Chemical Engineering and Technology, 2006, 29, 1015-1026.	1.5	95
47	Sustainability of green solvents – review and perspective. Green Chemistry, 2022, 24, 410-437.	9.0	95
48	Visibleâ€Lightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie - International Edition, 2017, 56, 12702-12707.	13.8	94
49	Fuel processing in integrated micro-structured heat-exchanger reactors. Journal of Power Sources, 2007, 171, 198-204.	7.8	93
50	Experimental studies of nitrobenzene hydrogenation in a microstructured falling film reactor. Chemical Engineering Science, 2004, 59, 3491-3494.	3.8	92
51	Mild and selective base-free C–H arylation of heteroarenes: experiment and computation. Chemical Science, 2017, 8, 1046-1055.	7.4	91
52	The potential of micromixers for contacting of disperse liquid phases. Fresenius' Journal of Analytical Chemistry, 1999, 364, 617-624.	1.5	90
53	Selectivity Gains and Energy Savings for the Industrial Phenyl Boronic Acid Process Using Micromixer/Tubular Reactors. Organic Process Research and Development, 2004, 8, 511-523.	2.7	90
54	Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Applied Catalysis B: Environmental, 2017, 203, 859-869.	20.2	89

#	Article	IF	CITATIONS
55	Batch and Flow Synthesis of Disulfides by Visible‣ightâ€Induced TiO ₂ Photocatalysis. ChemSusChem, 2016, 9, 1781-1785.	6.8	88
56	Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nature Protocols, 2016, 11, 10-21.	12.0	88
57	Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes, 2018, 6, 248.	2.8	88
58	Visible-Light Photocatalytic Decarboxylation of α,β-Unsaturated Carboxylic Acids: Facile Access to Stereoselective Difluoromethylated Styrenes in Batch and Flow. ACS Catalysis, 2017, 7, 7136-7140.	11.2	87
59	Membrane Microreactors: Gas–Liquid Reactions Made Easy. ChemSusChem, 2013, 6, 405-407.	6.8	86
60	Aqueous Kolbeâ^'Schmitt Synthesis Using Resorcinol in a Microreactor Laboratory Rig under High-p,T Conditions. Organic Process Research and Development, 2005, 9, 479-489.	2.7	85
61	Sustainability through green processing – novel process windows intensify micro and milli process technologies. Energy and Environmental Science, 2008, 1, 467.	30.8	83
62	Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chemical Engineering Journal, 2011, 171, 279-290.	12.7	82
63	Aerobic C–H Olefination of Indoles via a Cross-Dehydrogenative Coupling in Continuous Flow. Organic Letters, 2014, 16, 5800-5803.	4.6	75
64	Life Cycle Analysis within Pharmaceutical Process Optimization and Intensification: Case Study of Active Pharmaceutical Ingredient Production. ChemSusChem, 2014, 7, 3521-3533.	6.8	74
65	Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chemical Engineering Journal, 2017, 307, 1-8.	12.7	74
66	Microchemical Engineering: Components, Plant Concepts, User Acceptance – Part III. Chemical Engineering and Technology, 2003, 26, 531-544.	1.5	72
67	Numbering-up of micro devices: a first liquid-flow splitting unit. Chemical Engineering Journal, 2004, 101, 421-429.	12.7	72
68	High Throughput Kinetic Investigations of Asymmetric Hydrogenations with Microdevices. Advanced Synthesis and Catalysis, 2003, 345, 190-193.	4.3	71
69	Development of Microstructured Reactors to Enable Organic Synthesis Rather than Subduing Chemistry. Current Organic Chemistry, 2005, 9, 765-787.	1.6	70
70	A compact photomicroreactor design for kinetic studies of gasâ€liquid photocatalytic transformations. AICHE Journal, 2015, 61, 2215-2227.	3.6	70
71	Life cycle assessment of multi-step rufinamide synthesis – from isolated reactions in batch to continuous microreactor networks. Green Chemistry, 2016, 18, 1096-1116.	9.0	70
72	A Modular Flow Design for the <i>meta</i> â€6elective Câ^'H Arylation of Anilines. Angewandte Chemie - International Edition, 2017, 56, 7161-7165.	13.8	68

#	Article	IF	CITATIONS
73	Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up. ACS Sustainable Chemistry and Engineering, 2018, 6, 422-429.	6.7	68
74	Microchemical Engineering: Components, Plant Concepts, User Acceptance - Part II. Chemical Engineering and Technology, 2003, 26, 391-408.	1.5	67
75	Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochimica Acta, 2003, 48, 2889-2896.	5.2	67
76	Is there a future for enzymatic biodiesel industrial production in microreactors?. Applied Energy, 2017, 201, 124-134.	10.1	65
77	Packedâ€Bed Microreactor for Continuousâ€Flow Adipic Acid Synthesis from Cyclohexene and Hydrogen Peroxide. Chemical Engineering and Technology, 2013, 36, 1001-1009.	1.5	64
78	Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity. Industrial & Engineering Chemistry Research, 2010, 49, 2681-2687.	3.7	63
79	Micromixer-assisted polymerization processes. Chemical Engineering Science, 2011, 66, 1449-1462.	3.8	62
80	Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions. Catalysis Today, 2013, 211, 9-28.	4.4	62
81	Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters. Plasma Chemistry and Plasma Processing, 2016, 36, 241-257.	2.4	62
82	Copper(I) atalyzed Azide–Alkyne Cycloadditions in Microflow: Catalyst Activity, High‶ Operation, and an Integrated Continuous Copper Scavenging Unit. ChemSusChem, 2012, 5, 1703-1707.	6.8	61
83	Industrial applications of plasma, microwave and ultrasound techniques: Nitrogen-fixation and hydrogenation reactions. Chemical Engineering and Processing: Process Intensification, 2013, 71, 19-30.	3.6	61
84	Visible Light Photocatalytic Metal-Free Perfluoroalkylation of Heteroarenes in Continuous Flow. Journal of Flow Chemistry, 2015, 4, 12-17.	1.9	61
85	Design criteria for a barrier-based gas–liquid flow distributor for parallel microchannels. Chemical Engineering Journal, 2012, 181-182, 549-556.	12.7	60
86	Plasma assisted nitrogen oxide production from air: Using pulsed powered gliding arc reactor for a containerized plant. AICHE Journal, 2018, 64, 526-537.	3.6	60
87	Intensification of the Capillary-Based Kolbeâ~'Schmitt Synthesis from Resorcinol by Reactive Ionic Liquids, Microwave Heating, or a Combination Thereof. Organic Process Research and Development, 2009, 13, 970-982.	2.7	59
88	Solvent―and Catalystâ€Free Huisgen Cycloaddition to Rufinamide in Flow with a Greener, Less Expensive Dipolarophile. ChemSusChem, 2013, 6, 2220-2225.	6.8	58
89	Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. Reaction Chemistry and Engineering, 2020, 5, 2017-2047.	3.7	57
90	Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Applied Energy, 2018, 210, 268-278.	10.1	56

#	Article	IF	CITATIONS
91	Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chemical Engineering Journal, 2021, 417, 129355.	12.7	56
92	Numerical simulation of polymerization in interdigital multilamination micromixers. Lab on A Chip, 2005, 5, 966.	6.0	55
93	A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications. International Journal of Hydrogen Energy, 2008, 33, 1374-1382.	7.1	55
94	Review on Patents in Microreactor and Micro Process Engineering. Recent Patents on Chemical Engineering, 2008, 1, 1-16.	0.5	55
95	Transfer of the Epoxidation of Soybean Oil from Batch to Flow Chemistry Guided by Cost and Environmental Issues. ChemSusChem, 2012, 5, 300-311.	6.8	55
96	Visible Light-Induced Trifluoromethylation and Perfluoroalkylation of Cysteine Residues in Batch and Continuous Flow. Journal of Organic Chemistry, 2016, 81, 7301-7307.	3.2	55
97	Continuousâ€Flow Multistep Synthesis of Cinnarizine, Cyclizine, and a Buclizine Derivative from Bulk Alcohols. ChemSusChem, 2016, 9, 67-74.	6.8	54
98	Fluidic bus system for chemical process engineering in the laboratory and for small-scale production. Chemical Engineering Journal, 2005, 107, 205-214.	12.7	53
99	Improvement of Dye Properties of the Azo Pigment Yellow 12 Using a Micromixer-Based Process. Organic Process Research and Development, 2005, 9, 188-192.	2.7	52
100	Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels. Chemical Engineering Journal, 2008, 135, S153-S158.	12.7	51
101	Liquid-liquid extraction for the separation of Co(II) from Ni(II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor. Chemical Engineering Journal, 2018, 332, 131-139.	12.7	51
102	Lipase-Based Biocatalytic Flow Process in a Packed-Bed Microreactor. Industrial & Engineering Chemistry Research, 2013, 52, 10951-10960.	3.7	50
103	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.	0.7	50
104	A sensitivity analysis of a numbered-up photomicroreactor system. Reaction Chemistry and Engineering, 2017, 2, 109-115.	3.7	50
105	Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process. Chemical Engineering Science, 2018, 178, 157-166.	3.8	50
106	Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 2022, 47, 25831-25848.	7.1	50
107	2- and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chemical Engineering Journal, 2015, 260, 454-462.	12.7	49
108	Asymmetric catalytic hydrogenations at micro-litre scale in a helicoidal single channel falling film micro-reactor. Catalysis Today, 2005, 110, 179-187.	4.4	48

#	Article	IF	CITATIONS
109	Cost Analysis for a Continuously Operated Fine Chemicals Production Plant at 10 Kg/Day Using a Combination of Microprocessing and Microwave Heating. Journal of Flow Chemistry, 2011, 1, 74-89.	1.9	48
110	Scale-up and economic analysis of biodiesel production from recycled grease trap waste. Applied Energy, 2018, 229, 142-150.	10.1	48
111	Metallic nanoparticles made in flow and their catalytic applications in organic synthesis. Nanotechnology Reviews, 2014, 3, 65-86.	5.8	47
112	Deciphering the synergy between plasma and catalyst support for ammonia synthesis in a packed dielectric barrier discharge reactor. Journal Physics D: Applied Physics, 2020, 53, 144003.	2.8	47
113	Synthesis of N-doped carbon dots via a microplasma process. Chemical Engineering Science, 2020, 220, 115648.	3.8	47
114	Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors. Chemical Engineering Journal, 2012, 207-208, 564-576.	12.7	46
115	A Mechanistic Investigation of the Visibleâ€Light Photocatalytic Trifluoromethylation of Heterocycles Using CF ₃ 1 in Flow. Chemistry - A European Journal, 2016, 22, 12295-12300.	3.3	46
116	Novel Liquid-Flow Splitting Unit Specifically Made for Numbering-Up of Liquid/Liquid Chemical Microprocessing. Chemical Engineering and Technology, 2003, 26, 1271-1280.	1.5	45
117	Impact of fluid path geometry and operating parameters on I/I-dispersion in interdigital micromixers. Chemical Engineering Science, 2006, 61, 2959-2967.	3.8	45
118	Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles. Chemical Engineering Science, 2008, 63, 5149-5159.	3.8	45
119	Methanol to dimethyl ether conversion over a ZSM-5 catalyst: Intrinsic kinetic study on an external recycle reactor. Chemical Engineering Journal, 2018, 347, 741-753.	12.7	45
120	Practical Photocatalytic Trifluoromethylation and Hydrotrifluoromethylation of Styrenes in Batch and Flow. Angewandte Chemie, 2016, 128, 15778-15782.	2.0	44
121	Flow Chemistry of the Kolbeâ€Schmitt Synthesis from Resorcinol: Process Intensification by Alternative Solvents, New Reagents and Advanced Reactor Engineering. Chemical Engineering and Technology, 2009, 32, 1774-1789.	1.5	43
122	Design methodology for barrierâ€based two phase flow distributor. AICHE Journal, 2012, 58, 3482-3493.	3.6	43
123	Flow Synthesis of Diaryliodonium Triflates. Journal of Organic Chemistry, 2017, 82, 11735-11741.	3.2	43
124	Solvent extraction of metals: Role of ionic liquids and microfluidics. Separation and Purification Technology, 2021, 262, 118289.	7.9	43
125	Addition of Secondary Amines to \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Carbonyl Compounds and Nitriles by Using Microstructured Reactors. Organic Process Research and Development, 2006, 10, 1144-1152.	2.7	42
126	The development and evaluation of microstructured reactors for the water gas shift and preferential oxidation reactions in the 5kW range. International Journal of Hydrogen Energy, 2010, 35, 2317-2327.	7.1	42

#	Article	IF	CITATIONS
127	Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development – Use of Chemistry and Process Design as Intensification Fields. Chemie-Ingenieur-Technik, 2012, 84, 660-684.	0.8	42
128	Preparation of zeolite films as catalytic coatings on microreactor channels. Microporous and Mesoporous Materials, 2008, 115, 147-155.	4.4	41
129	Basic Study of Adhesion of Several Alumina-based Washcoats Deposited on Stainless Steel Microchannels. Chemical Engineering and Technology, 2006, 29, 1509-1512.	1.5	40
130	Use of â€~smart interfaces' to improve the liquid-sided mass transport in a falling film microreactor. Chemical Engineering Science, 2010, 65, 3557-3566.	3.8	40
131	An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles. Chemical Engineering Journal, 2017, 321, 447-457.	12.7	40
132	Plasma Assisted Catalytic Conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor. Plasma Chemistry and Plasma Processing, 2019, 39, 109-124.	2.4	40
133	Environmentally Benign Microreaction Process Design by Accompanying (Simplified) Life Cycle Assessment. Chemical Engineering and Technology, 2009, 32, 1757-1765.	1.5	39
134	Homogeneous Polymerization: Benefits Brought by Microprocess Technologies to the Synthesis and Production of Polymers. Macromolecular Reaction Engineering, 2010, 4, 543-561.	1.5	39
135	A View Through Novel Process Windows. Australian Journal of Chemistry, 2013, 66, 121.	0.9	39
136	Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow. Chemical Engineering Journal, 2015, 270, 468-475.	12.7	39
137	Real-time reaction control for solar production of chemicals under fluctuating irradiance. Green Chemistry, 2018, 20, 2459-2464.	9.0	39
138	The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis. Catalysis Today, 2021, 362, 2-10.	4.4	39
139	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	6.7	38
140	Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations. Chemical Engineering Journal, 2008, 135, S242-S246.	12.7	37
141	Design, scale-out, and operation of a microchannel reactor with a Cu/CeO2â^x catalytic coating for preferential CO oxidation. Chemical Engineering Journal, 2010, 160, 923-929.	12.7	37
142	Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chemical Science, 2017, 8, 1251-1258.	7.4	37
143	Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process. Chemical Engineering Journal, 2013, 234, 300-311.	12.7	36
144	From alcohol to 1,2,3-triazole via a multi-step continuous-flow synthesis of a rufinamide precursor. Green Chemistry, 2016, 18, 4947-4953.	9.0	36

#	Article	IF	CITATIONS
145	Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure. Chemical Engineering Science, 2017, 168, 360-371.	3.8	36
146	Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors. AICHE Journal, 2017, 63, 689-697.	3.6	35
147	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie, 2017, 129, 1070-1074.	2.0	35
148	Gas / Liquid Microreactors for Direct Fluorination of Aromatic Compounds Using Elemental Fluorine. , 2000, , 526-540.		34
149	Microfluidic fabrication of fluorescent nanomaterials: A review. Chemical Engineering Journal, 2021, 425, 131511.	12.7	33
150	From a Review of Noble Metal versus Enzyme Catalysts for Glucose Oxidation Under Conventional Conditions Towards a Process Design Analysis for Continuous-flow Operation. Journal of Flow Chemistry, 2012, 1, 13-23.	1.9	32
151	Microstructure-based intensification of a falling film microreactor through optimal film setting with realistic profiles and in-channel induced mixing. Chemical Engineering Journal, 2012, 179, 318-329.	12.7	32
152	The impact of Novel Process Windows on the Claisen rearrangement. Tetrahedron, 2013, 69, 2885-2890.	1.9	32
153	Designing flow and temperature uniformities in parallel microchannels reactor. AICHE Journal, 2014, 60, 1941-1952.	3.6	32
154	Life Cycle Assessment of the Nitrogen Fixation Process Assisted by Plasma Technology and Incorporating Renewable Energy. Industrial & Engineering Chemistry Research, 2016, 55, 8141-8153.	3.7	32
155	Every photon counts: understanding and optimizing photon paths in luminescent solar concentrator-based photomicroreactors (LSC-PMs). Reaction Chemistry and Engineering, 2017, 2, 561-566.	3.7	32
156	Continuous Synthesis of <i>tert</i> â€Butyl Peroxypivalate using a Singleâ€Channel Microreactor Equipped with Orifices as Emulsification Units. ChemSusChem, 2011, 4, 392-398.	6.8	31
157	Energy Considerations for Plasma-Assisted N-Fixation Reactions. Processes, 2014, 2, 694-710.	2.8	31
158	Cost Analysis of a Commercial Manufacturing Process of a Fine Chemical Compound Using Micro Process Engineering. Chimia, 2006, 60, 611-617.	0.6	30
159	Agile Green Process Design for the Intensified Kolbe–Schmitt Synthesis by Accompanying (Simplified) Life Cycle Assessment. Environmental Science & Technology, 2013, 47, 5362-5371.	10.0	30
160	Visibleâ€Lightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie, 2017, 129, 12876-12881.	2.0	30
161	Environmental impact assessment of plasmaâ€assisted and conventional ammonia synthesis routes. Journal of Industrial Ecology, 2020, 24, 1171-1185.	5.5	30
162	g/l-Dispersion in interdigital micromixers with different mixing chamber geometries. Chemical Engineering Journal, 2004, 101, 75-85.	12.7	29

#	Article	IF	CITATIONS
163	Phenylacetylene Hydrogenation over [Rh(NBD)(PPh ₃) ₂]BF ₄ Catalyst in a Numbered-Up Microchannels Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 11516-11526.	3.7	29
164	Controlled Photocatalytic Aerobic Oxidation of Thiols to Disulfides in an Energyâ€Efficient Photomicroreactor. Chemical Engineering and Technology, 2015, 38, 1733-1742.	1.5	29
165	Micromixer Based Liquid/Liquid Dispersion. Chemical Engineering and Technology, 2005, 28, 501-508.	1.5	28
166	Bromination of Thiophene in Micro Reactors. Letters in Organic Chemistry, 2005, 2, 767-779.	0.5	28
167	Microwave-assisted Cu-catalyzed Ullmann ether synthesis in a continuous-flow milli-plant. Chemical Engineering Journal, 2012, 207-208, 426-439.	12.7	28
168	Development of a Microrectification Apparatus for Analytical and Preparative Applications. Chemical Engineering and Technology, 2012, 35, 58-71.	1.5	28
169	Eco-efficiency Analysis for Intensified Production of an Active Pharmaceutical Ingredient: A Case Study. Organic Process Research and Development, 2014, 18, 1326-1338.	2.7	28
170	Mixers with Microstructured Foils for Chemical Production Purposes. Chemical Engineering and Technology, 2005, 28, 401-407.	1.5	27
171	High-Temperature Epoxidation of Soybean Oil in Flow—Speeding up Elemental Reactions Wanted and Unwanted. Industrial & Engineering Chemistry Research, 2012, 51, 1680-1689.	3.7	27
172	Fluidic separation in microstructured devices – Concepts and their Integration into process flow networks. Chemical Engineering Science, 2017, 169, 3-17.	3.8	27
173	A Modular Flow Design for the <i>meta</i> â€Selective Câ^'H Arylation of Anilines. Angewandte Chemie, 2017, 129, 7267-7271.	2.0	27
174	Applicability of the axial dispersion model to coiled flow inverters containing single liquid phase and segmented liquid-liquid flows. Chemical Engineering Science, 2018, 182, 77-92.	3.8	27
175	Novel Process Window for the safe and continuous synthesis of tertbutyl peroxy pivalate in a micro-reactor. Chemical Engineering Journal, 2011, 167, 504-509.	12.7	26
176	Enhancement of the Liquid-Side Mass Transfer in a Falling Film Catalytic Microreactor by In-Channel Mixing Structures. Industrial & Engineering Chemistry Research, 2012, 51, 8719-8725.	3.7	26
177	Coupling Microreaction Technologies, Polymer Chemistry, and Processing to Produce Polymeric Micro and Nanoparticles with Controlled Size, Morphology, and Composition. Macromolecular Reaction Engineering, 2013, 7, 414-439.	1.5	26
178	Methane reforming in a small-scaled plasma reactor – Industrial application of a plasma process from the viewpoint of the environmental profile. Chemical Engineering Journal, 2015, 262, 766-774.	12.7	25
179	Integrated Microstructured Fuel Processors for Fuel Cell Applications. Chemical Engineering Research and Design, 2005, 83, 626-633.	5.6	24
180	Cu-Based Nanoalloys in the Base-Free Ullmann Heterocyle-Aryl Ether Synthesis. Organic Process Research and Development, 2010, 14, 644-649.	2.7	24

#	Article	IF	CITATIONS
181	Effect of the Load Size on the Efficiency of Microwave Heating Under Stop Flow and Continuous Flow Conditions. Journal of Microwave Power and Electromagnetic Energy, 2012, 46, 83-92.	0.8	24
182	Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts. Engineering in Life Sciences, 2013, 13, 326-343.	3.6	24
183	Hydrogen Peroxide Decomposition on Manganese Oxide Supported Catalyst: From Batch Reactor to Continuous Microreactor. Industrial & Engineering Chemistry Research, 2013, 52, 7668-7676.	3.7	24
184	Biotechnical Micro-Flow Processing at the EDGE – Lessons to be learnt for a Young Discipline. Chemical and Biochemical Engineering Quarterly, 2014, 28, 167-188.	0.9	24
185	High Pressure Direct Synthesis of Adipic Acid from Cyclohexene and Hydrogen Peroxide via Capillary Microreactors. Industrial & Engineering Chemistry Research, 2016, 55, 2669-2676.	3.7	24
186	Eco-efficiency analysis of plasma-assisted nitrogen fixation. Journal Physics D: Applied Physics, 2020, 53, 234001.	2.8	24
187	Techno-environmental assessment of small-scale Haber-Bosch and plasma-assisted ammonia supply chains. Science of the Total Environment, 2022, 826, 154162.	8.0	24
188	Scale-up of Process Intensifying Falling Film Microreactors to Pilot Production Scale. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	23
189	Palladium-Catalyzed Aerobic Oxidative Coupling of <i>o</i> -Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling. Organic Process Research and Development, 2016, 20, 831-835.	2.7	23
190	Hydrogen Chloride Gas in Solvent-Free Continuous Conversion of Alcohols to Chlorides in Microflow. Organic Process Research and Development, 2016, 20, 568-573.	2.7	23
191	"Sandwich Reactor―for Heterogeneous Catalytic Processes: N ₂ O Decomposition as a Case Study. Chemical Engineering and Technology, 2008, 31, 1162-1169.	1.5	22
192	Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa. Processes, 2016, 4, 54.	2.8	22
193	Continuous, monodisperse silver nanoparticles synthesis using microdroplets as a reactor. Journal of Flow Chemistry, 2019, 9, 1-7.	1.9	22
194	Review on Patents in Microreactor and Micro Process Engineering. Recent Patents on Chemical Engineering, 2010, 1, 1-16.	0.5	22
195	Microstructured Fuel Processors for Fuel-Cell Applications. Journal of Materials Engineering and Performance, 2006, 15, 389-393.	2.5	21
196	Characterization of a Redispersion Microreactor by Studying its Dispersion Performance. Chemical Engineering and Technology, 2008, 31, 1124-1129.	1.5	21
197	Energy efficient and controlled flow processing under microwave heating by using a millireactor–heat exchanger. AICHE Journal, 2012, 58, 3144-3155.	3.6	21
198	Recent Changes in Patenting Behavior in Microprocess Technology and its Possible Use for Gas–Liquid Reactions and the Oxidation of Glucose. ChemSusChem, 2012, 5, 232-245.	6.8	21

#	Article	IF	CITATIONS
199	Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support. Beilstein Journal of Organic Chemistry, 2013, 9, 2168-2179.	2.2	21
200	Microflow High-p,T Intensification of Vitamin D ₃ Synthesis Using an Ultraviolet Lamp. Organic Process Research and Development, 2018, 22, 147-155.	2.7	21
201	Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry and Engineering, 2020, 5, 1374-1396.	3.7	21
202	The accelerated preparation of 1,4-dihydropyridines using microflow reactors. Tetrahedron Letters, 2014, 55, 2090-2092.	1.4	20
203	Scale-up of Microwave Assisted Flow Synthesis by Transient Processing through Monomode Cavities in Series. Organic Process Research and Development, 2014, 18, 1400-1407.	2.7	20
204	Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation. RSC Advances, 2015, 5, 15898-15908.	3.6	20
205	Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals. Energy Conversion and Management, 2020, 210, 112709.	9.2	20
206	Modeling of Anionic Polymerization in Flow With Coupled Variations of Concentration, Viscosity, and Diffusivity. Macromolecular Reaction Engineering, 2012, 6, 507-515.	1.5	19
207	Micro/Milliflow Processing with Selective Catalyst Microwave Heating in the Cuâ€Catalyzed Ullmann Etherification Reaction: A 1¼ ² â€Process. ChemSusChem, 2013, 6, 353-366.	6.8	19
208	Pressureâ€Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance. ChemSusChem, 2015, 8, 504-512.	6.8	19
209	Nano-architectured CeO2 supported Rh with remarkably enhanced catalytic activity for propylene glycol reforming reaction in microreactors. Applied Catalysis B: Environmental, 2018, 226, 403-411.	20.2	19
210	Sustainable Production of Lipase from <i>Thermomyces lanuginosus</i> : Process Optimization and Enzyme Characterization. Industrial & amp; Engineering Chemistry Research, 2020, 59, 21144-21154.	3.7	19
211	Microwave assisted flow synthesis: Coupling of electromagnetic and hydrodynamic phenomena. AICHE Journal, 2014, 60, 3824-3832.	3.6	18
212	Dimethyl ether to hydrocarbons over ZSM-5: Kinetic study in an external recycle reactor. Chemical Engineering Journal, 2018, 354, 21-34.	12.7	18
213	Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on By-Products from Cold-Pressing Oil Production. Processes, 2019, 7, 465.	2.8	18
214	Plasma-assisted nitrogen fixation in nanomaterials: fabrication, characterization, and application. Journal Physics D: Applied Physics, 2020, 53, 133001.	2.8	18
215	Microreactor Processing for the Aqueous Kolbe-Schmitt Synthesis of Hydroquinone and Phloroglucinol. Chemical Engineering and Technology, 2007, 30, 355-362.	1.5	17
216	Removal and renewal of catalytic coatings from lab- and pilot-scale microreactors, accompanied by life cycle assessment and cost analysis. Green Chemistry, 2012, 14, 3034.	9.0	17

#	Article	IF	CITATIONS
217	Catalyst retention in continuous flow with supercritical carbon dioxide. Chemical Engineering and Processing: Process Intensification, 2014, 83, 26-32.	3.6	17
218	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2110-2110.	6.8	17
219	Synthesis of Ni nanoparticles with controllable magnetic properties by atmospheric pressure microplasma assisted process. AICHE Journal, 2018, 64, 1540-1549.	3.6	17
220	Facile synthesis of lanthanide doped yttria nanophosphors by a simple microplasma-assisted process. Reaction Chemistry and Engineering, 2019, 4, 891-898.	3.7	17
221	Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach. Chemical Engineering Journal, 2020, 385, 123399.	12.7	17
222	Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 2021, 50, 11979-12012.	38.1	17
223	Microfluidics and Macrofluidics in Space: ISS-Proven Fluidic Transport and Handling Concepts. Frontiers in Space Technologies, 2022, 2, .	1.4	17
224	Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate. Green Chemistry, 2011, 13, 1799.	9.0	16
225	Orifice microreactor for the production of an organic peroxide – non-reactive and reactive characterization. Green Chemistry, 2012, 14, 1420.	9.0	16
226	Micro reactor and flow chemistry for industrial applications in drug discovery and development. Green Processing and Synthesis, 2012, 1, .	3.4	16
227	Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system – Performance and diastereoselectivity studies. Chemical Engineering Science, 2017, 169, 97-105.	3.8	16
228	Economic Optimization of Local Australian Ammonia Production Using Plasma Technologies with Green/Turquoise Hydrogen. ACS Sustainable Chemistry and Engineering, 2021, 9, 16304-16315.	6.7	16
229	Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods, 2022, 11, 409.	4.3	16
230	Investigations on pulse broadening for catalyst screening in gas/liquid systems. AICHE Journal, 2004, 50, 1814-1823.	3.6	15
231	Redispersion Microreactor System for Phase Transfer atalyzed Esterification. Chemical Engineering and Technology, 2011, 34, 1691-1699.	1.5	15
232	Continuous Multitubular Millireactor with a Cu Thin Film for Microwave-Assisted Fine-Chemical Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 14344-14354.	3.7	15
233	An Asymmetric Organocatalytic Aldol Reaction of a Hydrophobic Aldehyde in Aqueous Medium Running in Flow Mode. Synthesis, 2019, 51, 1178-1184.	2.3	15
234	Life cycle assessment of vitamin D3 synthesis: from batch to photo-high p,T. International Journal of Life Cycle Assessment, 2019, 24, 2111-2127.	4.7	15

#	Article	IF	CITATIONS
235	Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles. Frontiers of Chemical Science and Engineering, 2019, 13, 501-510.	4.4	15
236	Life cycle assessment and cost evaluation of emerging technologies at early stages: The case of continuous flow synthesis of Rufinamide. Journal of Advanced Manufacturing and Processing, 2020, 2, .	2.4	15
237	Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. Journal of Food Science, 2021, 86, 3762-3777.	3.1	15
238	Plasma-Assisted Nitrogen Fixation Reactions. RSC Green Chemistry, 2016, , 296-338.	0.1	15
239	The Effects of Pulse Shape on the Selectivity and Production Rate in Non-oxidative Coupling of Methane by a Micro-DBD Reactor. Plasma Chemistry and Plasma Processing, 2022, 42, 619-640.	2.4	15
240	New Cuâ€Based Catalysts Supported on TiO ₂ Films for Ullmann S _N Arâ€Type CO Coupling Reactions. Chemistry - A European Journal, 2012, 18, 1800-1810.	3.3	14
241	Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil—Process Design and Life-Cycle Assessment. Industrial & Engineering Chemistry Research, 2017, 56, 3373-3387.	3.7	14
242	Survey of Synthesis Processes for N-Doped Carbon Dots Assessed by Green Chemistry and Circular and EcoScale Metrics. ACS Sustainable Chemistry and Engineering, 2021, 9, 4755-4770.	6.7	14
243	Characterization of a Gas/Liquid Microreactor, the Micro Bubble Column: Determination of Specific Interfacial Area. , 2001, , 202-214.		14
244	The resource gateway: Microfluidics and requirements engineering for sustainable space systems. Chemical Engineering Science, 2020, 225, 115774.	3.8	14
245	Novel Process Windows - Gates to Maximizing Process Intensification via Flow Chemistry. Chemical Engineering and Technology, 2009, 32, 1641-1641.	1.5	13
246	A supported aqueous phase catalyst coating in micro flow Mizoroki–Heck reaction. Tetrahedron Letters, 2013, 54, 2194-2198.	1.4	13
247	Kolbeâ€Schmitt Flow Synthesis in Aqueous Solution – From Lab Capillary Reactor to Pilot Plant. Chemical Engineering and Technology, 2013, 36, 1010-1016.	1.5	13
248	Microwave Setup Design for Continuous Fine hemicals Synthesis. Chemical Engineering and Technology, 2014, 37, 1645-1653.	1.5	13
249	Quality-In(Process)Line (QulProLi) process intensification for a micro-flow UV-photo synthesis enabled by online UHPLC analysis. Tetrahedron, 2018, 74, 3143-3151.	1.9	13
250	Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines, 2018, 9, 248.	2.9	13
251	Multistep Solvent-Free 3 m ² Footprint Pilot Miniplant for the Synthesis of Annual Half-Ton Rufinamide Precursor. ACS Sustainable Chemistry and Engineering, 2019, 7, 17237-17251.	6.7	13
252	Continuousâ€Flow Extraction of Adjacent Metals—A Disruptive Economic Window for Inâ€Situ Resource Utilization of Asteroids?. Angewandte Chemie - International Edition, 2021, 60, 3368-3388.	13.8	13

#	Article	IF	CITATIONS
253	Triâ€fold process integration leveraging high―and <scp>lowâ€ŧemperature</scp> plasmas: From biomass to fertilizers with local energy and for local use. Journal of Advanced Manufacturing and Processing, 2021, 3, e10081.	2.4	13
254	Continuous microflow synthesis of fluorescent phosphorus and nitrogen co-doped carbon quantum dots. Chemical Engineering Research and Design, 2022, 178, 395-404.	5.6	13
255	Quantum materials made in microfluidics - critical review and perspective. Chemical Engineering Journal, 2022, 438, 135616.	12.7	13
256	Tailor-made microdevices for maximizing process intensification and productivity through advanced heating. Chemical Engineering Journal, 2011, 167, 510-518.	12.7	12
257	Improving Energy Efficiency of Process of Direct Adipic Acid Synthesis in Flow Using Pinch Analysis. Industrial & Engineering Chemistry Research, 2013, 52, 7827-7835.	3.7	12
258	Novel route to control the size, distribution and location of Ni nanoparticles in mesoporous silica for steam reforming of propylene glycol in microchannel reactor. Catalysis Communications, 2016, 83, 43-47.	3.3	12
259	Continuous ruthenium-catalyzed methoxycarbonylation with supercritical carbon dioxide. Catalysis Science and Technology, 2016, 6, 4712-4717.	4.1	12
260	Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D ₃ . Organic Process Research and Development, 2018, 22, 178-189.	2.7	12
261	Cost analysis of oil cake-to-biodiesel production in packed-bed micro-flow reactors with immobilized lipases. Journal of Bioscience and Bioengineering, 2019, 128, 98-102.	2.2	12
262	Everything Flows: Continuous Micro-Flow for Pharmaceutical Production. Chemistry International, 2018, 40, 12-16.	0.3	11
263	Gold–Carbon Nanocomposites for Environmental Contaminant Sensing. Micromachines, 2021, 12, 719.	2.9	11
264	Circular Economy Metrics for the Photo-High-p,T Continuous Multistep Synthesis of Vitamin D ₃ . ACS Sustainable Chemistry and Engineering, 2021, 9, 1867-1879.	6.7	11
265	3D Analysis of Heat Transfer Intensification by Reâ€Entrance Flow Pinâ€Fins Microstructures with a Highly Thermal onductive Plate. Chemical Engineering and Technology, 2011, 34, 379-390.	1.5	10
266	Reaction modelling of a microstructured falling film reactor incorporating staggered herringbone structures using eddy diffusivity concepts. Chemical Engineering Journal, 2013, 227, 34-41.	12.7	10
267	The Claisen Rearrangement – Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow. ChemBioEng Reviews, 2014, 1, 244-261.	4.4	10
268	Mass Transfer Characterization of Ionic Liquid Solvents for Extracting Phenol from Aqueous Phase in a Microscale Coiled Flow Inverter. Industrial & Engineering Chemistry Research, 2020, 59, 16427-16436.	3.7	10
269	Simulation study of a pulsed DBD with an electrode containing charge injector parts. Physics of Plasmas, 2021, 28, .	1.9	10
270	Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes. Chemical Engineering Science, 2020, 225, 115803.	3.8	10

#	Article	IF	CITATIONS
271	The Claisen Rearrangement – Part 1: Mechanisms and Transition States, Revisited with Quantum Mechanical Calculations and Ultrashort Pulse Spectroscopy. ChemBioEng Reviews, 2014, 1, 230-240.	4.4	9
272	Synthesis gas production from methane and propane in a miniaturized GlidArc ® reformer. International Journal of Hydrogen Energy, 2014, 39, 12657-12666.	7.1	9
273	Laserâ€Mediated Photoâ€Highâ€p,T Intensification of Vitamin D ₃ Synthesis in Continuous Flow. ChemPhotoChem, 2018, 2, 922-930.	3.0	9
274	The influence of dielectric permittivity of water on the shape of PtNPs synthesized in high-pressure high-temperature microwave reactor. Scientific Reports, 2021, 11, 4851.	3.3	9
275	Production of Biodiesel from Recycled Grease Trap Waste: A Review. Industrial & Engineering Chemistry Research, 2021, 60, 16547-16560.	3.7	9
276	Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, 2021, 426, 131703.	12.7	9
277	Astropharmacy: Pushing the boundaries of the pharmacists' role for sustainable space exploration. Research in Social and Administrative Pharmacy, 2022, 18, 3612-3621.	3.0	9
278	Rational design for the microplasma synthesis from vitamin B9 to N-doped carbon quantum dots towards selected applications. Carbon, 2022, 198, 22-33.	10.3	9
279	An Investigation into the Transient Behavior of a Microreactor System for Reforming of Diesel Fuel in the kW Range. Chemical Engineering and Technology, 2009, 32, 1790-1798.	1.5	8
280	Supported Liquid Phase Catalyst coating in micro flow Mizoroki–Heck reaction. Chemical Engineering Journal, 2015, 279, 143-148.	12.7	8
281	A New Spectrophotometric Assay for Measuring the Hydrolytic Activity of Lipase from <i>Thermomyces lanuginosus</i> : A Kinetic Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 4818-4826.	6.7	8
282	Microfluidic Plasma-Based Continuous and Tunable Synthesis of Ag–Au Nanoparticles and Their SERS Properties. Industrial & Engineering Chemistry Research, 2022, 61, 2183-2194.	3.7	8
283	Connected nucleophilic substitution-Claisen rearrangement in flow – Analysis for kilo-lab process solutions with orthogonality. Chemical Engineering Journal, 2015, 281, 144-154.	12.7	7
284	Photo-Claisen rearrangement of allyl phenyl ether in microflow: Influence of phenyl core substituents and vision on orthogonality. Journal of Flow Chemistry, 2016, 6, 252-259.	1.9	7
285	Ionic Liquid/Water Continuous-Flow System with Compartmentalized Spaces for Automatic Product Purification of Biotransformation with Enzyme Recycling. Industrial & Engineering Chemistry Research, 2020, 59, 21001-21011.	3.7	7
286	Conversion of greenhouse gases to synthetic fuel using a sustainable cyclic plasma process. International Journal of Hydrogen Energy, 2023, 48, 6174-6191.	7.1	7
287	Reactor Model for Fast Reactions in the Micro-Bubble Column and Validation. Industrial & Engineering Chemistry Research, 2007, 46, 8558-8565.	3.7	6
288	Life cycle assessment of novel supercritical methyl propionate process with carbon dioxide feedstock. Reaction Chemistry and Engineering, 2017, 2, 688-695.	3.7	6

#	Article	IF	CITATIONS
289	Colorâ€Tunable Eu ³⁺ and Tb ³⁺ Coâ€Doped Nanophosphors Synthesis by Plasmaâ€Assisted Method. ChemistrySelect, 2019, 4, 4278-4286.	1.5	6
290	2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chemical Engineering Journal, 2020, 382, 122922.	12.7	6
291	Photo isomerization of cis â€cyclooctene to trans â€cyclooctene: Integration of a microâ€flow reactor and separation by specific adsorption. AICHE Journal, 2021, 67, e17067.	3.6	6
292	Production of biodiesel by Burkholderia cepacia lipase as a function of process parameters. Biotechnology Progress, 2021, 37, e3109.	2.6	6
293	Life cycle assessment of multistep benzoxazole synthesis: from batch to waste-minimised continuous flow systems. Green Chemistry, 2022, 24, 325-337.	9.0	6
294	Thermal plasma-aided chemical looping carbon dioxide dissociation for fuel production from aluminium particles. Energy Conversion and Management, 2022, 257, 115413.	9.2	6
295	Metallic nanoparticles made in flow and their catalytic applications in micro-flow reactors for organic synthesis. Physical Sciences Reviews, 2016, 1, .	0.8	5
296	Toward on-board microchip synthesis of CdSe <i>vs.</i> PbSe nanocrystalline quantum dots as a spectral decoy for protecting space assets. Reaction Chemistry and Engineering, 2021, 6, 471-485.	3.7	5
297	Effect of Acetonitrileâ€Based Crystallization Conditions on the Crystal Quality ofÂVitaminÂD ₃ . Chemical Engineering and Technology, 2017, 40, 2016-2024.	1.5	5
298	Space Medicines for Space Health. ACS Medicinal Chemistry Letters, 2022, 13, 1231-1247.	2.8	5
299	Industrial and real-life applications of micro-reactor process engineering for fine and functional chemistry. Studies in Surface Science and Catalysis, 2006, 159, 35-46.	1.5	4
300	Microstructured Reactors for Development and Production in Pharmaceutical and Fine Chemistry. Ernst Schering Research Foundation Workshop, 2007, , 205-240.	0.7	4
301	A Kinetic Study on the Cu(0)-Catalyzed Ullmann-Type Nucleophilic Aromatic Substitution C–O Coupling of Potassium Phenolate and 4-Chloropyridine. Industrial & Engineering Chemistry Research, 2013, 52, 18206-18214.	3.7	4
302	Megatrends – megascience?. Green Processing and Synthesis, 2014, 3, 99-100.	3.4	4
303	Synthesis of metallic nanoparticles by microplasma. Physical Sciences Reviews, 2018, 3, .	0.8	4
304	Carbon Nanosheets Synthesis in a Gliding Arc Reactor: On the Reaction Routes and Process Parameters. Plasma Chemistry and Plasma Processing, 2021, 41, 191-209.	2.4	4
305	Life Cycle Assessment of an Enzymatic Ibuprofen Production Process with Automatic Recycling and Purification. ACS Sustainable Chemistry and Engineering, 2021, 9, 13135-13150.	6.7	4
306	Mixing Principles for Microstructured Mixers: Active and Passive Mixing. ACS Symposium Series, 2005, , 334-359.	0.5	3

#	Article	IF	CITATIONS
307	Sustainability lessons from practice: how flow intensification can trigger sustainability and modular plant technology in EU projects. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 483-500.	1.5	3
308	Conferences are scientific market places. Green Processing and Synthesis, 2015, 4, 1-2.	3.4	3
309	Solvent impact assessment for the "One-Flow Functional Solvent Factory― Chemical Engineering Science: X, 2019, 3, 100024.	1.5	3
310	Tunable enhanced Faraday rotation in a defected plasma photonic crystal under external magnetic field with different declinations. Journal Physics D: Applied Physics, 2021, 54, 505203.	2.8	3
311	Special issue on nitrogen fixation in plasma: from fundamentals to sustainability. Journal Physics D: Applied Physics, 2020, 53, 420201.	2.8	3
312	Thermal-plasma-assisted renewable hydrogen and solid carbon production from ionic liquid-based biogas upgrading: A process intensification study. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108777.	3.6	3
313	Claisenâ€Umlagerung im Rühr―und Durchflussbetrieb: Verstädnis des Mechanismus und Steuerung der Einflussgrößen. Chemie-Ingenieur-Technik, 2014, 86, 2160-2179.	0.8	2
314	Micro(reactor)cosmos - still Expanding into the Engineering Universe. Chemical Engineering and Technology, 2013, 36, 883-883.	1.5	1
315	Megatrends – megascience? Part 2. Green Processing and Synthesis, 2014, 3, 187-187.	3.4	1
316	Megatrends – megascience? Part 3. Green Processing and Synthesis, 2014, 3, 257-258.	3.4	1
317	Ready for the future? The research train to the next decade leaves soon. Green Processing and Synthesis, 2014, 3, 1-2.	3.4	1
318	Chemical Intensification in Flow - Novel Process Windows. Chemical Engineering and Technology, 2015, 38, 1698-1698.	1.5	1
319	Electrification of chemistry – what is the synergy between plasma synthesis and chemical plant modularization?. Green Processing and Synthesis, 2015, 4, .	3.4	1
320	Development of an Integrated Continuous Crystallization Process of Vitamin D3. Chemie-Ingenieur-Technik, 2016, 88, 1213-1213.	0.8	1
321	2. Synthesis of metallic nanoparticles by microplasma. , 2018, , 49-102.		1
322	Ecological assessment as balancing act between disruptive innovation and industrial implementation: Designer-solvent processes with automatic product purification and recycling. Journal of Cleaner Production, 2021, 318, 128456.	9.3	1
323	Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers. Materials, 2021, 14, 6598.	2.9	1
324	Zero waste, single step methods of fabrication of reduced graphene oxide decorated with gold nanoparticles. Sustainable Materials and Technologies, 2022, 31, e00387.	3.3	1

#	ARTICLE	IF	CITATIONS
325	Study of the Segregated Behavior of Anionic Microfluidic Polymerization. Macromolecular Symposia, 2013, 333, 55-61.	0.7	0
326	Megatrends $\hat{a} {\in} ``$ megascience? Part 4. Green Processing and Synthesis, 2014, 3, .	3.4	0
327	Science Woodstock and Nobel Prize: what remains in 50 years?. Green Processing and Synthesis, 2014, 3,	3.4	0
328	CHAPTER 13. Cross-Coupling Chemistry in Continuous Flow. RSC Catalysis Series, 0, , 610-644.	0.1	0
329	10. From green chemistry principles in flow chemistry towards green flow process design in the holistic viewpoint. , 2014, , 283-312.		0
330	Has GPS landed with precision?. Green Processing and Synthesis, 2015, 4, .	3.4	0
331	Enough time for inspiration?. Green Processing and Synthesis, 2015, 4, .	3.4	0
332	Science needs passion – science is passion – science gives passion. Green Processing and Synthesis, 2016, 5, .	3.4	0
333	Merging of the sciences and technologies: non-technological barriers. Green Processing and Synthesis, 2016, 5, .	3.4	0
334	Kontinuierliche Extraktion benachbarter Metalle im Durchstrombetrieb – ein disruptiver ökonomischer Ansatz zur Inâ€situâ€Rohstoffgewinnung auf Asteroiden?. Angewandte Chemie, 2021, 133, 3408-3431.	2.0	0
335	Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, .	2.7	Ο