Yasuhide Kuwabara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased MicroRNA-1 and MicroRNA-133a Levels in Serum of Patients With Cardiovascular Disease Indicate Myocardial Damage. Circulation: Cardiovascular Genetics, 2011, 4, 446-454.	5.1	497
2	MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (<i>Srebp2</i>) regulates HDL in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17321-17326.	7.1	346
3	MicroRNAâ€33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE ^{â^'/â^'} Mice. Journal of the American Heart Association, 2012, 1, e003376.	3.7	196
4	MicroRNA-451 Exacerbates Lipotoxicity in Cardiac Myocytes and High-Fat Diet-Induced Cardiac Hypertrophy in Mice Through Suppression of the LKB1/AMPK Pathway. Circulation Research, 2015, 116, 279-288.	4.5	185
5	MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nature Communications, 2013, 4, 2883.	12.8	183
6	MicroRNAs and cardiovascular diseases. FEBS Journal, 2011, 278, 1619-1633.	4.7	148
7	Prognostic Impact of Left Ventricular Ejection Fraction in Patients With SevereÂAortic Stenosis. JACC: Cardiovascular Interventions, 2018, 11, 145-157.	2.9	77
8	MicroRNA-27a Regulates Beta Cardiac Myosin Heavy Chain Gene Expression by Targeting Thyroid Hormone Receptor β1 in Neonatal Rat Ventricular Myocytes. Molecular and Cellular Biology, 2011, 31, 744-755.	2.3	76
9	Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2161-2170.	2.4	69
10	MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol. Circulation Research, 2017, 120, 835-847.	4.5	55
11	MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Scientific Reports, 2014, 4, 5312.	3.3	44
12	Prevention of neointimal formation using miRNA-126-containing nanoparticle-conjugated stents in a rabbit model. PLoS ONE, 2017, 12, e0172798.	2.5	28
13	MicroRNA-33a/b in Lipid Metabolism. Circulation Journal, 2015, 79, 278-284.	1.6	27
14	MicroRNAs and Lipoprotein Metabolism. Journal of Atherosclerosis and Thrombosis, 2014, 21, 17-22.	2.0	24
15	<i>SREBF1</i> /MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2460-2473.	2.4	24
16	Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE, 2015, 10, e0142904.	2.5	23
17	Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Scientific Reports, 2018, 8, 8553.	3.3	22
18	MicroRNA 26b encoded by the intron of small CTD phosphatase (SCP) 1 has an antagonistic effect on its host gene. Journal of Cellular Biochemistry, 2012, 113, 3455-3465.	2.6	19

YASUHIDE KUWABARA

#	Article	IF	CITATIONS
19	Nardilysin is a promising biomarker for the early diagnosis of acute coronary syndrome. International Journal of Cardiology, 2017, 243, 1-8.	1.7	19
20	MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. International Heart Journal, 2015, 56, 365-371.	1.0	18
21	Identification of Differential Roles of MicroRNAâ€33a and â€33b During Atherosclerosis Progression With Genetically Modified Mice. Journal of the American Heart Association, 2019, 8, e012609.	3.7	17
22	Dynamic changes of serum microRNAâ€122â€5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Failure, 2017, 4, 112-121.	3.1	16
23	Long Non-Coding RNAs as Key Regulators of Cardiovascular Diseases. Circulation Journal, 2018, 82, 1231-1236.	1.6	16
24	Cardiac-Specific Inhibition of Kinase Activity in Calcium/Calmodulin-Dependent Protein Kinase Kinase-β Leads to Accelerated Left Ventricular Remodeling and Heart Failure after Transverse Aortic Constriction in Mice. PLoS ONE, 2014, 9, e108201.	2.5	15
25	microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nature Communications, 2021, 12, 843.	12.8	14
26	High-density lipoprotein cholesterol levels and cardiovascular outcomes in Japanese patients after percutaneous coronary intervention: A report from the CREDO-Kyoto registry cohort-2. Atherosclerosis, 2015, 242, 632-638.	0.8	13
27	Cardioprotective Effects of VCPÂModulator KUS121 in Murine and Porcine Models of Myocardial Infarction. JACC Basic To Translational Science, 2019, 4, 701-714.	4.1	12
28	MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6C ^{high} Monocytes through Dual Pathways. Molecular and Cellular Biology, 2018, 38, .	2.3	11
29	Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Scientific Reports, 2018, 8, 16749.	3.3	9
30	MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clinical Science, 2019, 133, 583-595.	4.3	7
31	Lionheart LincRNA alleviates cardiac systolic dysfunction under pressure overload. Communications Biology, 2020, 3, 434.	4.4	3
32	CaMKKβ Contributes To Energy Supply In Adaptive Phase Of Pressure-overload-induced Heart Failure. Journal of Cardiac Failure, 2011, 17, S142.	1.7	0
33	Changes and Physiological Meanings of Serum microRNA during Therapeutic Course of Acute Heart Failure. Journal of Cardiac Failure, 2016, 22, S178-S179.	1.7	0
34	MicroRNA-33 Promotes Cardiac Fibrosis Through Maintaining Cellular Lipid Contents. Journal of Cardiac Failure, 2016, 22, S162.	1.7	0
35	Overexpression of the lincRNA Regulated by Pressure-Overload Leads to Cardiomyocyte Hypertrophy. Journal of Cardiac Failure, 2016, 22, S206.	1.7	0