List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938135/publications.pdf Version: 2024-02-01

REN DOLLTED

#	Article	lF	CITATIONS
1	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
2	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	5.4	1,649
3	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
4	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
5	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
6	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	3.7	1,159
7	Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014, 509, 600-603.	13.7	1,054
8	Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4, 2934.	5.8	1,013
9	The dominant role of semi-arid ecosystems in the trend and variability of the land CO ₂ sink. Science, 2015, 348, 895-899.	6.0	1,002
10	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	3.7	905
11	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
12	Plant responses to rising vapor pressure deficit. New Phytologist, 2020, 226, 1550-1566.	3.5	814
13	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	3.7	801
14	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	4.2	683
15	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663
16	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp> trends. Global Change Biology, 2013, 19, 2117-2132.</scp>	4.2	617
17	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	3.7	616
18	Detection and attribution of vegetation greening trend in China over the last 30Âyears. Global Change Biology, 2015, 21, 1601-1609.	4.2	597

#	Article	IF	CITATIONS
19	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	1.3	587
20	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	4.2	583
21	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	6.0	576
22	The global carbon budget 1959–2011. Earth System Science Data, 2013, 5, 165-185.	3.7	527
23	Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.	13.7	480
24	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	1.3	475
25	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	3.7	463
26	Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 2014, 146, 69-83.	3.8	460
27	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	5.8	414
28	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
29	The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016, 531, 225-228.	13.7	402
30	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
31	Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4382-4387.	3.3	370
32	Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change, 2015, 5, 579-583.	8.1	357
33	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	6.0	317
34	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	3.7	311
35	Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 2013, 22, 706-717.	2.7	297
36	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	5.4	284

#	Article	IF	CITATIONS
37	Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 2019, 5, eaat4313.	4.7	282
38	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
39	The growing role of methane in anthropogenic climate change. Environmental Research Letters, 2016, 11, 120207.	2.2	274
40	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
41	Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 2015, 29, 775-792.	1.9	241
42	Raster modelling of coastal flooding from seaâ€level rise. International Journal of Geographical Information Science, 2008, 22, 167-182.	2.2	235
43	Terrestrial biosphere model performance for interâ€annual variability of landâ€atmosphere <scp><scp>CO₂</scp> exchange. Global Change Biology, 2012, 18, 1971-1987.</scp>	4.2	232
44	Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 2020, 15, 071002.	2.2	232
45	Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.	8.1	225
46	Change in terrestrial ecosystem waterâ€use efficiency over the last three decades. Global Change Biology, 2015, 21, 2366-2378.	4.2	215
47	The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Geoscientific Model Development, 2013, 6, 2121-2133.	1.3	212
48	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	4.7	208
49	North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 2012, 232, 144-157.	1.2	207
50	Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the United States of America, 2017, 114, 9647-9652.	3.3	201
51	Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative. Geoscientific Model Development, 2015, 8, 2315-2328.	1.3	197
52	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	5.8	194
53	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	1.3	189
54	Impact of largeâ€scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 2014, 28, 585-600.	1.9	181

#	Article	IF	CITATIONS
55	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	4.2	175
56	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	1.3	165
57	A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 2014, 11, 381-407.	1.3	162
58	Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 2017, 7, 4765.	1.6	156
59	Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 2017, 7, 148-152.	8.1	151
60	Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters, 2016, 19, 1119-1128.	3.0	148
61	NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sensing of Environment, 2021, 257, 112349.	4.6	148
62	Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean and Coastal Management, 2010, 53, 507-517.	2.0	144
63	Plant functional type mapping for earth system models. Geoscientific Model Development, 2011, 4, 993-1010.	1.3	140
64	A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 2014, 176, 307-322.	0.9	131
65	When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 2018, 197, 1-20.	1.4	131
66	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509.	1.9	130
67	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
68	Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 2019, 568, 221-225.	13.7	124
69	Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015, 10, 094008.	2.2	119
70	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	1.1	118
71	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7, 2747-2767.	1.3	109
72	Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 2013, 178-179, 31-45.	1.9	108

#	Article	IF	CITATIONS
73	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	1.9	105
74	Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature Geoscience, 2019, 12, 730-735.	5.4	105
75	Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist, 2019, 222, 18-28.	3.5	104
76	The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 2012, 9, 3571-3586.	1.3	103
77	Global patterns and climate drivers of waterâ€use efficiency in terrestrial ecosystems deduced from satelliteâ€based datasets and carbon cycle models. Global Ecology and Biogeography, 2016, 25, 311-323.	2.7	102
78	Seasonal responses of terrestrial ecosystem waterâ€use efficiency to climate change. Global Change Biology, 2016, 22, 2165-2177.	4.2	100
79	Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 2016, 7, 10724.	5.8	93
80	Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences, 2014, 11, 4271-4288.	1.3	92
81	The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biology, 2014, 20, 1473-1480.	4.2	90
82	Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environmental Research Letters, 2015, 10, 064014.	2.2	90
83	The El Niño-Southern Oscillation and wetland methane interannual variability. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	89
84	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
85	Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 2016, 6, 37747.	1.6	83
86	Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sensing, 2013, 5, 4819-4838.	1.8	82
87	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
88	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	1.3	78
89	Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO ₂ airborne fraction. Biogeosciences, 2011, 8, 2027-2036.	1.3	75
90	Evaluation of continental carbon cycle simulations with North American flux tower observations. Ecological Monographs, 2013, 83, 531-556.	2.4	75

#	Article	IF	CITATIONS
91	Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 1475-1512.	1.9	73
92	Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. Journal of Geophysical Research, 2011, 116, .	3.3	72
93	Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 2021, 8, nwaa145.	4.6	70
94	Improved tree-ring archives will support earth-system science. Nature Ecology and Evolution, 2017, 1, 8.	3.4	68
95	Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecology and Biogeography, 2017, 26, 1225-1237.	2.7	68
96	Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. Journal of Geophysical Research, 2006, 111, .	3.3	66
97	Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models. Global Biogeochemical Cycles, 2017, 31, 1639-1655.	1.9	63
98	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	1.8	63
99	Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. Journal of Hydrology, 2008, 357, 207-217.	2.3	62
100	Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Global Change Biology, 2019, 25, 3381-3394.	4.2	62
101	Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 2010, 16, 2062-2075.	4.2	61
102	500 years of regional forest growth variability and links to climatic extreme events in Europe. Environmental Research Letters, 2012, 7, 045705.	2.2	61
103	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	2.2	61
104	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
105	The dry season intensity as a key driver of NPP trends. Geophysical Research Letters, 2016, 43, 2632-2639.	1.5	60
106	Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Regional Environmental Change, 2011, 11, 543-551.	1.4	59
107	Comparing treeâ \in ing and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere, 2016, 7, e01454.	1.0	59
108	Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 2017, 5, 730-749.	2.4	59

#	Article	IF	CITATIONS
109	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	4.2	59
110	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	1.9	59
111	Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model. Geoscientific Model Development, 2012, 5, 1091-1108.	1.3	58
112	Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 2017, 14, 5053-5067.	1.3	58
113	Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations. Biogeosciences, 2017, 14, 3685-3703.	1.3	58
114	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	5.4	58
115	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	3.7	58
116	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	4.2	56
117	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	1.9	55
118	Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences, 2016, 13, 1387-1408.	1.3	55
119	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	1.3	55
120	Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{S}$ Science, 2019, 366, .	6.0	55
121	The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography, 2016, 25, 1166-1172.	2.7	54
122	A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles, 2018, 32, 1226-1240.	1.9	54
123	Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Global Change Biology, 2010, 16, 2476-2495.	4.2	53
124	Opportunities and Trade-offs among BECCS and the Food, Water, Energy, Biodiversity, and Social Systems Nexus at Regional Scales. BioScience, 2018, 68, 100-111.	2.2	53
125	Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests. Ecosystems, 2009, 12, 517-533.	1.6	51
126	Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrology and Earth System Sciences, 2013, 17, 2247-2262.	1.9	51

#	Article	IF	CITATIONS
127	Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions. Geophysical Research Letters, 2018, 45, 3737-3745.	1.5	51
128	Impact of hydrological variations on modeling of peatland CO ₂ fluxes: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	50
129	Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking. Landscape Ecology, 2013, 28, 835-846.	1.9	50
130	African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120376.	1.8	49
131	Toward "optimal―integration of terrestrial biosphere models. Geophysical Research Letters, 2015, 42, 4418-4428.	1.5	48
132	Benchmarking the seasonal cycle of CO ₂ fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 2015, 29, 46-64.	1.9	48
133	Multiâ€model comparison highlights consistency in predicted effect of warming on a semiâ€arid shrub. Global Change Biology, 2018, 24, 424-438.	4.2	47
134	The climatic drivers of normalized difference vegetation index and treeâ€ringâ€based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Global Ecology and Biogeography, 2018, 27, 1352-1365.	2.7	47
135	Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 2021, 13, 2001-2023.	3.7	47
136	Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environmental Research Letters, 2018, 13, 074009.	2.2	46
137	Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environmental Research Letters, 2020, 15, 064010.	2.2	46
138	MEASURING THE IMPACT OF SEA-LEVEL RISE ON COASTAL REAL ESTATE: A HEDONIC PROPERTY MODEL APPROACH*. Journal of Regional Science, 2011, 51, 751-767.	2.1	45
139	Anomalous carbon uptake in Australia as seen by GOSAT. Geophysical Research Letters, 2015, 42, 8177-8184.	1.5	45
140	Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets. Atmospheric Environment, 2017, 165, 310-321.	1.9	44
141	Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological dataâ€model integration. Global Change Biology, 2021, 27, 13-26.	4.2	44
142	Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy, 2016, 8, 81-95.	2.5	43
143	Emergent climate and <scp>CO</scp> ₂ sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 2017, 23, 2755-2767.	4.2	43
144	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.	4.2	43

#	Article	IF	CITATIONS
145	Sea-level rise research and dialogue in North Carolina: Creating windows for policy change. Ocean and Coastal Management, 2009, 52, 147-153.	2.0	42
146	A Wood Biology Agenda to Support Global Vegetation Modelling. Trends in Plant Science, 2018, 23, 1006-1015.	4.3	42
147	Land carbon models underestimate the severity and duration of drought's impact on plant productivity. Scientific Reports, 2019, 9, 2758.	1.6	42
148	Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.	3.7	42
149	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
150	Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecological Monographs, 2015, 85, 49-72.	2.4	41
151	Enhanced methane emissions from tropical wetlands during the 2011 La Niña. Scientific Reports, 2017, 7, 45759.	1.6	41
152	A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models. Atmospheric Chemistry and Physics, 2015, 15, 9285-9312.	1.9	40
153	Increased lightâ€use efficiency in northern terrestrial ecosystems indicated by CO ₂ and greening observations. Geophysical Research Letters, 2016, 43, 11,339.	1.5	40
154	Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275, 47-58.	1.9	40
155	The terrestrial carbon budget of South and Southeast Asia. Environmental Research Letters, 2016, 11, 105006.	2.2	39
156	Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 2017, 12, 064007.	2.2	39
157	Precipitation thresholds regulate net carbon exchange at the continental scale. Nature Communications, 2018, 9, 3596.	5.8	39
158	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	9.0	39
159	Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environmental Research Letters, 2020, 15, 104028.	2.2	39
160	Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 2021, 311, 108663.	1.9	39
161	Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environmental Research Letters, 2010, 5, 014013.	2.2	38
162	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	1.9	38

#	Article	IF	CITATIONS
163	Global Priority Conservation Areas in the Face of 21st Century Climate Change. PLoS ONE, 2013, 8, e54839.	1.1	38
164	Decadal-Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems, 2019, 22, 1918-1930.	1.6	37
165	Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Scientific Reports, 2019, 9, 14680.	1.6	37
166	Land-use harmonization datasets for annual global carbon budgets. Earth System Science Data, 2021, 13, 4175-4189.	3.7	37
167	Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geoscientific Model Development, 2015, 8, 2263-2283.	1.3	36
168	Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1372-1393.	1.3	35
169	Postâ€disturbance canopy recovery and the resilience of Europe's forests. Global Ecology and Biogeography, 2022, 31, 25-36.	2.7	35
170	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	5.8	34
171	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	1.3	34
172	Inundation of freshwater peatlands by sea level rise: Uncertainty and potential carbon cycle feedbacks. Journal of Geophysical Research, 2008, 113, .	3.3	33
173	Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophysical Research Letters, 2017, 44, 6173-6181.	1.5	33
174	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	1.9	33
175	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	1.9	33
176	Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Science Advances, 2021, 7, eabf9415.	4.7	33
177	Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO ₂ Uptake. Geophysical Research Letters, 2018, 45, 4820-4830.	1.5	32
178	Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models. Ecosystems, 2018, 21, 410-425.	1.6	32
179	Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1554-1575.	1.3	31
180	Decadal trends in the seasonal-cycle amplitude of terrestrial CO ₂ exchange resulting from the ensemble of terrestrial biosphere models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28968.	0.8	31

#	Article	IF	CITATIONS
181	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	2.2	31
182	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31
183	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	1.9	30
184	Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis. Biogeosciences, 2013, 10, 6893-6909.	1.3	30
185	Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network. Biogeosciences, 2014, 11, 2661-2678.	1.3	30
186	Contrasting effects of CO ₂ fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO ₂ exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375.	1.9	30
187	Sensitivity of global terrestrial carbon cycle dynamics to variability in satelliteâ€øbserved burned area. Global Biogeochemical Cycles, 2015, 29, 207-222.	1.9	29
188	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	1.3	29
189	Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	2.7	29
190	A review of carbon monitoring in wet carbon systems using remote sensing. Environmental Research Letters, 2022, 17, 025009.	2.2	29
191	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	5.8	28
192	Redefining temperate forest responses to climate and disturbance in the eastern United States: New insights at the mesoscale. Global Ecology and Biogeography, 2019, 28, 557-575.	2.7	28
193	Prior biosphere model impact on global terrestrial CO ₂ fluxes estimated from OCO-2 retrievals. Atmospheric Chemistry and Physics, 2019, 19, 13267-13287.	1.9	28
194	Role of CO ₂ , climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences, 2016, 13, 5121-5137.	1.3	26
195	Using satellite data to identify the methane emission controls of South Sudan's wetlands. Biogeosciences, 2021, 18, 557-572.	1.3	26
196	Determinants of coastal treeline and the role of abiotic and biotic interactions. Plant Ecology, 2009, 202, 55-66.	0.7	25
197	Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7488-7505.	1.2	25
198	Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends. Ecosystems, 2019, 22, 873-891.	1.6	25

#	Article	IF	CITATIONS
199	Use of various remote sensing land cover products for plant functional type mapping over Siberia. Earth System Science Data, 2013, 5, 331-348.	3.7	24
200	The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 2016, 13, 223-238.	1.3	24
201	A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands. Biogeosciences, 2016, 13, 5043-5056.	1.3	24
202	Critical land change information enhances the understanding of carbon balance in the United States. Global Change Biology, 2020, 26, 3920-3929.	4.2	24
203	Multimodel Analysis of Future Land Use and Climate Change Impacts on Ecosystem Functioning. Earth's Future, 2019, 7, 833-851.	2.4	22
204	Tolerance of <i>Pinus taeda</i> and <i>Pinus serotina</i> to low salinity and flooding: Implications for equilibrium vegetation dynamics. Journal of Vegetation Science, 2008, 19, 15-22.	1.1	21
205	1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations. Remote Sensing, 2014, 6, 8923-8944.	1.8	21
206	Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. Npj Science of Food, 2021, 5, 9.	2.5	21
207	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. National Science Review, 2022, 9, nwab200.	4.6	20
208	Modeling phenological controls on carbon dynamics in dryland sagebrush ecosystems. Agricultural and Forest Meteorology, 2019, 274, 85-94.	1.9	19
209	Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters, 2020, 15, 025005.	2.2	19
210	Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow. Science of the Total Environment, 2021, 769, 144559.	3.9	18
211	Satellite remote sensing of tropical forest canopies and their seasonal dynamics. International Journal of Remote Sensing, 2009, 30, 6575-6590.	1.3	17
212	Quantifying sources of Brazil's CH ₄ emissions between 2010 and 2018 from satellite data. Atmospheric Chemistry and Physics, 2020, 20, 13041-13067.	1.9	17
213	Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Clobal Ecology and Biogeography, 2016, 25, 586-595.	2.7	16
214	Impacts of land use change and elevated CO ₂ on the interannual variations and seasonal cycles of gross primary productivity in China. Earth System Dynamics, 2020, 11, 235-249.	2.7	16
215	Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 2020, 26, 1474-1484.	4.2	15
216	Response to Comments on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg7484.	6.0	15

#	Article	IF	CITATIONS
217	Uncertainty Quantification of Global Net Methane Emissions From Terrestrial Ecosystems Using a Mechanistically Based Biogeochemistry Model. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005428.	1.3	15
218	Salinity thresholds for understory plants in coastal wetlands. Plant Ecology, 2022, 223, 323-337.	0.7	15
219	Fire regimes and variability in aboveground woody biomass in miombo woodland. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1014-1029.	1.3	14
220	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	4.2	14
221	Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and near-real-time assimilation systems. Atmospheric Chemistry and Physics, 2021, 21, 9609-9628.	1.9	14
222	Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	14
223	Measuring the economic effects of sea level rise on shore fishing. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 777-792.	1.0	13
224	Long-term Wood Production in Water-Limited Forests: Evaluating Potential CO2 Fertilization Along with Historical Confounding Factors. Ecosystems, 2015, 18, 1043-1055.	1.6	13
225	COVID-19 lockdowns drive decline in active fires in southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
226	Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model. Biogeosciences, 2013, 10, 8233-8252.	1.3	12
227	Reconciling carbonâ€cycle processes from ecosystem to global scales. Frontiers in Ecology and the Environment, 2021, 19, 57-65.	1.9	12
228	OCOâ€2 Satelliteâ€Imposed Constraints on Terrestrial Biospheric CO ₂ Fluxes Over South Asia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
229	Assimilating satelliteâ€based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 2017, 44, 6823-6832.	1.5	11
230	A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere. Global Change Biology, 2020, 26, 6931-6944.	4.2	10
231	Land management and climate change determine secondâ€generation bioenergy potential of the US Northern Great Plains. GCB Bioenergy, 2020, 12, 491-509.	2.5	10
232	Linking global terrestrial CO ₂ fluxes and environmental drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680.	1.9	10
233	How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?. Ecological Modelling, 2015, 303, 87-96.	1.2	9
234	Contribution of environmental forcings to US runoff changes for the period 1950–2010. Environmental Research Letters, 2018, 13, 054023.	2.2	9

#	Article	IF	CITATIONS
235	The impact of spatiotemporal variability in atmospheric CO ₂ concentration on global terrestrial carbon fluxes. Biogeosciences, 2018, 15, 5635-5652.	1.3	9
236	The Arctic-Boreal vulnerability experiment model benchmarking system. Environmental Research Letters, 2019, 14, 055002.	2.2	9
237	On the ability of a global atmospheric inversion to constrain variations of CO ₂ fluxes over Amazonia. Atmospheric Chemistry and Physics, 2015, 15, 8423-8438.	1.9	8
238	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	1.3	8
239	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	2.2	8
240	Large Methane Emissions From the Pantanal During Rising Water‣evels Revealed by Regularly Measured Lower Troposphere CH ₄ Profiles. Global Biogeochemical Cycles, 2021, 35, e2021GB006964.	1.9	8
241	Reconciling Precipitation with Runoff: Observed Hydrological Change in the Midlatitudes. Journal of Hydrometeorology, 2015, 16, 2403-2420.	0.7	7
242	A segmentation algorithm for characterizing rise and fall segments in seasonal cycles: an application to XCO ₂ to estimate benchmarks and assess model bias. Atmospheric Measurement Techniques, 2019, 12, 2611-2629.	1.2	7
243	Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF. Ecological Modelling, 2021, 440, 109417.	1.2	7
244	Forest responses to lastâ€millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecology Letters, 2021, 24, 498-508.	3.0	7
245	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	1.9	7
246	Effect of tree demography and flexible root water uptake for modeling the carbon and water cycles of Amazonia. Ecological Modelling, 2022, 469, 109969.	1.2	7
247	Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Scientific Data, 2022, 9, .	2.4	7
248	Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics, 2022, 22, 6347-6364.	1.9	6
249	Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model. Remote Sensing, 2022, 14, 2405.	1.8	6
250	Challenges in developing a computationally efficient plant physiological height-class-structured forest model. Ecological Complexity, 2014, 19, 96-110.	1.4	5
251	Impact of a Regional U.S. Drought on Land and Atmospheric Carbon. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005599.	1.3	5
252	Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model. Geoscientific Model Development, 2021, 14, 2575-2601.	1.3	5

#	Article	IF	CITATIONS
253	Assessing Model Predictions of Carbon Dynamics in Global Drylands. Frontiers in Environmental Science, 2022, 10, .	1.5	5
254	Climate-mediated nitrogen and carbon dynamics in a tropical watershed. Journal of Geophysical Research, 2011, 116, .	3.3	4
255	Hiatus of wetland methane emissions associated with recent La Niña episodes in the Asian monsoon region. Climate Dynamics, 2020, 54, 4095-4107.	1.7	4
256	Spectral Fidelity of Earth's Terrestrial and Aquatic Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006273.	1.3	4
257	Aboveground and belowground responses to cyanobacterial biofertilizer supplement in a semiâ€arid, perennial bioenergy cropping system. GCB Bioenergy, 2021, 13, 1908-1923.	2.5	4
258	Assessing carbon dynamics in Amazonia with the Dynamic Global Vegetation Model LPJmL — discharge evaluation. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2008, 30, 455-458.	0.1	2
259	Drivers of recent forest cover change in southern South America are linked to climate and CO2. Landscape Ecology, 2021, 36, 3591.	1.9	2
260	NASA's Surface Biology and Geology Concept Study: Status and Next Steps. , 2020, , .		2
261	Improving Our Understanding of Earth System Processes: GREENCYCLES Annual Network and Midterm Review Meeting, Barcelona, Spain, 21-23 March 2007. Eos, 2007, 88, 372-372.	0.1	0
262	Modeling Global Landâ€Use Decision Making Analysis, Integration and Modeling of the Earth System (AIMES) Third Young Scholar's Network Workshop; Bristol, United Kingdom, 2–4 June 2007. Eos, 2007, 88, 546-546.	0.1	0
263	Toward comprehensive uncertainty predictions for remote imaging spectroscopy. , 2020, , .		0
264	Semiarid ecosystems. , 2022, , 311-335.		0
265	Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods. , 2022, , 59-85.		0
266	Balancing greenhouse gas sources and sinks: Inventories, budgets, and climate policy. , 2022, , 3-28.		0