Thomas Griesser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937901/publications.pdf

Version: 2024-02-01

218677 345221 1,710 83 26 36 h-index citations g-index papers 86 86 86 2416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polymer Chemistry, 2016, 7, 5169-5180.	3.9	86
2	Celluloseâ€Derivativeâ€Based Gate Dielectric for Highâ€Performance Organic Complementary Inverters. Advanced Materials, 2015, 27, 7645-7656.	21.0	69
3	Cellulose as biodegradable high- <i>k</i> dielectric layer in organic complementary inverters. Applied Physics Letters, 2013, 103, .	3.3	65
4	Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose, 2015, 22, 749-761.	4.9	56
5	Digital light processing 3D printing with thiol–acrylate vitrimers. Polymer Chemistry, 2021, 12, 639-644.	3.9	53
6	New strategies towards reversible and mendable epoxy based materials employing [4Ï€s+4Ï€s] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer, 2015, 80, 76-87.	3.8	50
7	Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications. Cellulose, 2015, 22, 717-727.	4.9	49
8	Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Advances, 2014, 4, 11955-11961.	3.6	45
9	Tuning the Threshold Voltage in Organic Thinâ€Film Transistors by Local Channel Doping Using Photoreactive Interfacial Layers. Advanced Materials, 2010, 22, 5361-5365.	21.0	44
10	A Study on the Formation and Thermal Stability of 11 -MUA SAMs on Au(111)/Mica and on Polycrystalline Gold Foils. Langmuir, 2009 , 25 , 1427 - 1433 .	3.5	39
11	Design and application of photo-reversible elastomer networks by using the [4Ĭ€s+4Ï€s] cycloaddition reaction of pendant anthracene groups. Polymer, 2016, 102, 10-20.	3.8	37
12	Ring Opening Metathesis Polymerization Derived Polymers as Photoresists: Making Use of Thiolâ€ene Chemistry. Macromolecular Rapid Communications, 2011, 32, 518-522.	3.9	35
13	UV-Induced reduction of graphene oxide in cellulose nanofibril composites. New Journal of Chemistry, 2019, 43, 681-688.	2.8	35
14	Inkjet Printing of Soft, Stretchable Optical Waveguides through the Photopolymerization of High-Profile Linear Patterns. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4941-4947.	8.0	34
15	Switching "on―and "off―the adhesion in stimuli-responsive elastomers. Soft Matter, 2018, 14, 2547-2559.	2.7	34
16	Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths. Journal of Materials Chemistry, 2009, 19, 4557.	6.7	33
17	Exploring Network Formation of Tough and Biocompatible Thiolâ€yne Based Photopolymers. Macromolecular Rapid Communications, 2016, 37, 1701-1706.	3.9	33
18	Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers, 2021, 13, 56.	4.5	31

#	Article	IF	CITATIONS
19	UV-Induced Modulation of the Refractive Index and the Surface Properties of Photoreactive Polymers Bearing <i>N</i> -Phenylamide Groups. Macromolecules, 2009, 42, 725-731.	4.8	30
20	Waterâ€Developable Poly(2â€oxazoline)â€Based Negative Photoresists. Macromolecular Rapid Communications, 2012, 33, 396-400.	3.9	30
21	High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer. Organic Electronics, 2013, 14, 3070-3082.	2.6	30
22	Photo-induced crosslinking and thermal de-crosslinking in polynorbornenes bearing pendant anthracene groups. European Polymer Journal, 2014, 52, 98-104.	5.4	30
23	UV-induced modulation of the conductivity of polyaniline: towards a photo-patternable charge injection layer for structured organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 2922-2928.	6.7	29
24	Wavelength selective refractive index modulation in a ROMP derived polymer bearing phenyl- and ortho-nitrobenzyl ester groups. Journal of Materials Chemistry C, 2013, 1, 3931.	5.5	29
25	Photolithographic Patterning of Polymer Surfaces Using the Photo-Fries Rearrangement:Â Selective Postexposure Reactions. Chemistry of Materials, 2007, 19, 3011-3017.	6.7	28
26	Interactions of a cationic cellulose derivative with an ultrathin cellulose support. Carbohydrate Polymers, 2013, 92, 1046-1053.	10.2	27
27	Novel temperature dependent tensile test of freestanding copper thin film structures. Review of Scientific Instruments, 2012, 83, 064702.	1.3	25
28	Direct extreme UV-lithographic conversion of metal xanthates into nanostructured metal sulfide layers for hybrid photovoltaics. Journal of Materials Chemistry A, 2013, 1, 11135.	10.3	24
29	Directed motion of water droplets on multi-gradient photopolymer surfaces. Polymer Chemistry, 2019, 10, 1882-1893.	3.9	24
30	Photoâ€Fries Rearrangement in Polymeric Media: An Investigation on Fully Aromatic Esters Containing the Naphthyl Chromophore. Macromolecular Chemistry and Physics, 2008, 209, 488-498.	2.2	23
31	Cross-linking of ROMP derived polymers using the two-photon induced thiol–ene reaction: towards the fabrication of 3D-polymer microstructures. Polymer Chemistry, 2013, 4, 1708.	3.9	22
32	Micrometer and Nanometer Scale Patterning Using the Photo-Fries Rearrangement: Toward Selective Execution of Molecular Transformations with Nanoscale Spatial Resolution. Langmuir, 2008, 24, 12420-12425.	3.5	21
33	Highly Waterâ€Soluble Alphaâ€Hydroxyalkylphenone Based Photoinitiator for Lowâ€Migration Applications. Macromolecular Chemistry and Physics, 2017, 218, 1700022.	2.2	20
34	Photo-switching of surface wettability on micropatterned photopolymers for fast transport of water droplets over a long-distance. Polymer Chemistry, 2020, 11, 3125-3135.	3.9	20
35	Photocleavable epoxy based materials. Polymer, 2015, 69, 159-168.	3.8	19
36	Oneâ€Step Noncovalent Surface Functionalization of PDMS with Chitosanâ€Based Bioparticles and Their Proteinâ€Repellent Properties. Advanced Materials Interfaces, 2017, 4, 1700416.	3.7	19

#	Article	IF	Citations
37	Microwaveâ€Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources. ChemSusChem, 2015, 8, 3401-3404.	6.8	18
38	The Chemistry of Acylgermanes: Triacylgermenolates Represent Valuable Building Blocks for the Synthesis of a Variety of Germanium-Based Photoinitiators. Inorganic Chemistry, 2020, 59, 15204-15217.	4.0	18
39	Self-Reducing Silver Ink on Polyurethane Elastomers for the Manufacture of Thin and Highly Stretchable Electrical Circuits. Chemistry of Materials, 2021, 33, 2742-2755.	6.7	18
40	Photochemical control of the carrier mobility in pentacene-based organic thin-film transistors. Applied Physics Letters, 2010, 96, 213303.	3.3	17
41	Influence of Environmentally Affected Hole-Transport Layers on Spatial Homogeneity and Charge-Transport Dynamics of Organic Solar Cells. ACS Applied Materials & Diterfaces, 2018, 10, 10102-10114.	8.0	17
42	3D multiphoton lithography using biocompatible polymers with specific mechanical properties. Nanoscale Advances, 2020, 2, 2422-2428.	4.6	17
43	Photosensitive polymers bearing fully aromatic esters for multilayer data storage devices. Journal of Materials Chemistry, 2011, 21, 2965.	6.7	16
44	Investigating Photocurable Thiol‥ne Resins for Biomedical Materials. Macromolecular Materials and Engineering, 2017, 302, 1600450.	3.6	16
45	Reversible photochromism of polynorbornenes bearing spiropyran side groups. Monatshefte FÃ $^1\!\!/\!4$ r Chemie, 2012, 143, 1551-1558.	1.8	15
46	Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers. Beilstein Journal of Nanotechnology, 2016, 7, 637-644.	2.8	15
47	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	4.9	15
48	Vinylcarbonates as low-toxic monomers for digital ink-jet inks: Promising alternatives to acrylate based systems. Progress in Organic Coatings, 2016, 94, 116-123.	3.9	13
49	Photoreactive molecular layers containing aryl ester units: Preparation, UV patterning and post-exposure modification. Materials Chemistry and Physics, 2010, 119, 287-293.	4.0	12
50	Exploring thiol-yne based monomers as low cytotoxic building blocks for radical photopolymerization. Journal of Polymer Science Part A, 2016, 54, 3484-3494.	2.3	12
51	Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supports. Molecules, 2014, 19, 16266-16273.	3.8	11
52	Comparative investigation of different silane surface functionalizations of fullerene-like WS2. Journal of Materials Science, 2015, 50, 5125-5135.	3.7	11
53	Siliconâ€based mercaptans: Highâ€performance monomers for thiolâ€ene photopolymerization. Journal of Polymer Science Part A, 2016, 54, 418-424.	2.3	11
54	Single-step fabrication and work function engineering of Langmuir-Blodgett assembled few-layer graphene films with Li and Au salts. Scientific Reports, 2020, 10 , 8476 .	3.3	11

#	Article	IF	CITATIONS
55	Photoreactive Polynorbornene Bearing 4-(Diphenylamino)benzoate Groups: Synthesis and Application in Electroluminescent Devices. Monatshefte Für Chemie, 2007, 138, 269-276.	1.8	10
56	Versatile thiol-based reactions for micrometer- and nanometer-scale photopatterning of polymers and biomolecules. Journal of Materials Chemistry B, 2015, 3, 4431-4438.	5.8	10
57	Molecularly imprinted polymers by thiol–yne chemistry: making imprinting even easier. Polymer Chemistry, 2019, 10, 4732-4739.	3.9	10
58	Photo-Fries-based photosensitive polymeric interlayers for patterned organic devices. Applied Physics A: Materials Science and Processing, 2012, 107, 985-993.	2.3	9
59	Ammoxidized Fenton-Activated Pine Kraft Lignin Accelerates Synthesis and Curing of Resole Resins. Polymers, 2017, 9, 43.	4.5	9
60	Inkjet Printed Wiring Boards with Vertical Interconnect Access on Flexible, Fully Compostable Cellulose Substrates. Advanced Materials Technologies, 2018, 3, 1700250.	5.8	9
61	Dualâ€Responsive Polydimethylsiloxane Networks. Journal of Polymer Science Part A, 2018, 56, 2319-2329.	2.3	9
62	Crystallization of pentacene thin films on polymeric dielectrics. Synthetic Metals, 2012, 161, 2598-2602.	3.9	8
63	Enhancing the stability of UVâ€curable thiol/vinyl carbonate resins. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
64	Characterization of Surface and Structure of In Situ Doped Solâ€Gelâ€Derived Silicon Carbide. Advanced Engineering Materials, 2018, 20, 1701067.	3.5	8
65	Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydrate Polymers, 2021, 254, 117437.	10.2	8
66	Microstructural Effects on the Interfacial Adhesion of Nanometer-Thick Cu Films on Glass Substrates: Implications for Microelectronic Devices. ACS Applied Nano Materials, 2021, 4, 61-70.	5.0	8
67	Hybrid solar cells based on CuInS2 and MEH-PPV., 2006,,.		7
68	Reactive cellulose-based thin films – a concept for multifunctional polysaccharide surfaces. RSC Advances, 2016, 6, 72378-72385.	3.6	7
69	Dissolution Testing of Hardly Soluble Materials by Surface Sensitive Techniques: Clotrimazole from an Insoluble Matrix. Pharmaceutical Research, 2014, 31, 2708-2715.	3.5	6
70	Photopatternable Epoxy-Based Thermosets. Materials, 2019, 12, 2350.	2.9	6
71	UVâ€induced refractive index modulation of photoreactive polymers bearing <i>N</i> â€acylcarbazole groups. Journal of Polymer Science Part A, 2010, 48, 3507-3514.	2.3	5
72	Influence of TiO x and Ti cathode interlayers on the performance and stability of hybrid solar cells. Solar Energy Materials and Solar Cells, 2014, 130, 217-224.	6.2	5

#	Article	IF	CITATIONS
73	Isolable Stannenolates Enable the Synthesis of Visible‣ight Photoinitiators. ChemPhotoChem, 0, , .	3.0	5
74	Ex situ and in situ characterization of patterned photoreactive thin organic surface layers using friction force microscopy. Scanning, 2014, 36, 590-598.	1.5	4
75	Synthesis and characterization of diacylgermanes: persistent derivatives with superior photoreactivity. Dalton Transactions, 2021, 50, 11965-11974.	3.3	4
76	Patterned Immobilization of a Luminescent Ru(II) Complex in Polymer Films Using the Photoreaction of Benzyl thiocyanate: Toward Color Emission Tuning of Electroluminescent Devices. Macromolecular Chemistry and Physics, 2012, 213, 367-373.	2.2	3
77	Tailored Interfaces in Fiber-Reinforced Elastomers: A Surface Treatment Study on Optimized Load Coupling via the Modified Fiber Bundle Debond Technique. Polymers, 2021, 13, 36.	4.5	3
78	Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomers: Towards the Conversion of Acrylates to Biocompatible Building Blocks. ChemPhotoChem, 2020, 4, 476-480.	3.0	2
79	Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polymer Chemistry, 2021, 12, 3925-3938.	3.9	2
80	Patterned immobilisation of silicon dioxide nanoparticles on the surface of a photosensitive polymer. Thin Solid Films, 2012, 520, 1789-1793.	1.8	1
81	Christian Doppler Laboratory for Functional and Polymer Based Ink-jet Inks. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2014, 159, 50-54.	1.0	1
82	Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups. Data in Brief, 2016, 9, 524-529.	1.0	1
83	New water-based sol–gel synthesis routes for LaNi0.6Fe0.4O3-Î′thin films. Solid State Ionics, 2015, 273, 30-34.	2.7	0