List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937864/publications.pdf Version: 2024-02-01



MINCHE LIN

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Designer synthetic media for studying microbial-catalyzed biofuel production. Biotechnology for<br>Biofuels, 2015, 8, 1.                                                                                                                        | 6.2  | 418       |
| 2  | Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnology for Biofuels, 2010, 3, 1.                                                         | 6.2  | 365       |
| 3  | Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 2015, 33, 43-54.                                                                                                                        | 9.3  | 259       |
| 4  | Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnology for Biofuels, 2019, 12, 32.                                                                                 | 6.2  | 182       |
| 5  | Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy and Environmental Science, 2016, 9, 1215-1223.                                                                                                              | 30.8 | 169       |
| 6  | Alkaliâ€based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnology and Bioengineering, 2010, 107, 441-450.                                                                                | 3.3  | 168       |
| 7  | Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the United States of America, 2011, 108, 13212-13217.                                                                                           | 7.1  | 163       |
| 8  | Systems biology-guided biodesign of consolidated lignin conversion. Green Chemistry, 2016, 18, 5536-5547.                                                                                                                                       | 9.0  | 119       |
| 9  | Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 2017, 19, 4939-4955.                                                                                              | 9.0  | 116       |
| 10 | Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 2016, 113, 1676-1690.                                                      | 3.3  | 110       |
| 11 | Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 2010, 101, 8171-8178.                                                                  | 9.6  | 106       |
| 12 | Consolidated bioprocessing (CBP) performance of <i>Clostridium phytofermentans</i> on<br>AFEXâ€treated corn stover for ethanol production. Biotechnology and Bioengineering, 2011, 108,<br>1290-1297.                                           | 3.3  | 96        |
| 13 | A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy and Environmental Science, 2012, 5, 7168.                                           | 30.8 | 90        |
| 14 | Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 2018, 11, 21.                                                                                              | 6.2  | 85        |
| 15 | An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as<br>self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy and<br>Environmental Science, 2012, 5, 7100. | 30.8 | 83        |
| 16 | Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Research,<br>2020, 20, .                                                                                                                            | 2.3  | 83        |
| 17 | Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and<br>Ochrobactrum tritici strains. Environmental Science and Pollution Research, 2018, 25, 14171-14181.                                           | 5.3  | 81        |
| 18 | Simultaneous saccharification and co-fermentation (SSCF) of AFEXTM pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 2012, 110, 587-594.                | 9.6  | 72        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies.<br>Green Chemistry, 2016, 18, 957-966.                                                                                                                    | 9.0 | 68        |
| 20 | High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 2013, 146, 504-511.                                                                                  | 9.6 | 67        |
| 21 | Conversion of apple pomace waste to ethanol at industrial relevant conditions. Applied Microbiology and Biotechnology, 2016, 100, 7349-7358.                                                                                                             | 3.6 | 65        |
| 22 | Consolidated bioprocessing (CBP) of AFEXâ,"¢â€pretreated corn stover for ethanol production using<br><i>Clostridium phytofermentans</i> at a high solids loading. Biotechnology and Bioengineering, 2012,<br>109, 1929-1936.                             | 3.3 | 62        |
| 23 | Integrated bioethanol production from mixtures of corn and corn stover. Bioresource Technology, 2018, 258, 18-25.                                                                                                                                        | 9.6 | 59        |
| 24 | Comparative metabolic profiling revealed limitations in xyloseâ€fermenting yeast during<br>coâ€fermentation of glucose and xylose in the presence of inhibitors. Biotechnology and<br>Bioengineering, 2014, 111, 152-164.                                | 3.3 | 58        |
| 25 | Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnology for<br>Biofuels, 2017, 10, 228.                                                                                                                                  | 6.2 | 58        |
| 26 | Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass. Bioresource Technology, 2011, 102, 8040-8045. | 9.6 | 57        |
| 27 | Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn<br>Stover Hydrolysate by an Escherichia coli Ethanologen. Applied and Environmental Microbiology,<br>2012, 78, 3442-3457.                                 | 3.1 | 57        |
| 28 | Identification of oleaginous yeast strains able to accumulate high intracellular lipids when<br>cultivated in alkaline pretreated corn stover. Applied Microbiology and Biotechnology, 2014, 98,<br>7645-7657.                                           | 3.6 | 55        |
| 29 | In-house cellulase production from AFEXâ,,¢ pretreated corn stover using Trichoderma reesei RUT C-30.<br>RSC Advances, 2013, 3, 25960.                                                                                                                   | 3.6 | 52        |
| 30 | Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. Bioresource Technology, 2020, 295, 122253.                                                                                               | 9.6 | 49        |
| 31 | Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEXâ,,¢ pretreated corn stover. Biotechnology for Biofuels, 2013, 6, 108.                                                       | 6.2 | 47        |
| 32 | Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil. Chemosphere, 2020, 240, 124946.                                                                                                | 8.2 | 46        |
| 33 | Process integration for ethanol production from corn and corn stover as mixed substrates.<br>Bioresource Technology, 2019, 279, 10-16.                                                                                                                   | 9.6 | 45        |
| 34 | Densifying Lignocellulosic biomass with alkaline Chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green Chemistry, 2021, 23, 4828-4839.                                                        | 9.0 | 45        |
| 35 | Toward high solids loading process for lignocellulosic biofuel production at a low cost.<br>Biotechnology and Bioengineering, 2017, 114, 980-989.                                                                                                        | 3.3 | 44        |
| 36 | Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle. Biotechnology for Biofuels, 2014, 7, 73.                                                                                | 6.2 | 41        |

| #  | Article                                                                                                                                                                                                                                        | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Microbial polyhydroxyalkanoate production from lignin by Pseudomonas putida NX-1. Bioresource<br>Technology, 2021, 319, 124210.                                                                                                                | 9.6  | 41        |
| 38 | Quantitatively understanding reduced xylose fermentation performance in AFEXTM treated corn<br>stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11.<br>Bioresource Technology, 2012, 111, 294-300.       | 9.6  | 40        |
| 39 | Valorization of lignin components into gallate by integrated biological hydroxylation,<br>O-demethylation, and aryl side-chain oxidation. Science Advances, 2021, 7, eabg4585.                                                                 | 10.3 | 40        |
| 40 | Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate. PLoS ONE, 2018, 13, e0194012.                                              | 2.5  | 39        |
| 41 | Continuous SSCF of AFEXâ,,¢ pretreated corn stover for enhanced ethanol productivity using<br>commercial enzymes and <i>Saccharomyces cerevisiae</i> 424A (LNH‣T). Biotechnology and<br>Bioengineering, 2013, 110, 1302-1311.                  | 3.3  | 37        |
| 42 | Metabolic Engineering of <i>Clostridium cellulovorans</i> to Improve Butanol Production by Consolidated Bioprocessing. ACS Synthetic Biology, 2020, 9, 304-315.                                                                                | 3.8  | 35        |
| 43 | Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Applied<br>Microbiology and Biotechnology, 2021, 105, 1745-1758.                                                                                         | 3.6  | 34        |
| 44 | Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 2020, 315, 123846.                                                                         | 9.6  | 33        |
| 45 | Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high<br>digestibility and high fermentability for cellulosic ethanol production. Renewable Energy, 2022, 182,<br>377-389.                              | 8.9  | 33        |
| 46 | Low Temperature and Long Residence Time AFEX Pretreatment of Corn Stover. Bioenergy Research, 2012, 5, 372-379.                                                                                                                                | 3.9  | 31        |
| 47 | Developing fast enzyme recycling strategy through elucidating enzyme adsorption kinetics on alkali<br>and acid pretreated corn stover. Biotechnology for Biofuels, 2018, 11, 316.                                                              | 6.2  | 31        |
| 48 | Mixing alkali pretreated and acid pretreated biomass for cellulosic ethanol production featuring reduced chemical use and decreased inhibitory effect. Industrial Crops and Products, 2018, 124, 719-725.                                      | 5.2  | 31        |
| 49 | Development of a <i>Rhodococcus opacus</i> Cell Factory for Valorizing Lignin to Muconate. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 2016-2031.                                                                                   | 6.7  | 31        |
| 50 | Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microbial Biotechnology, 2020, 13, 410-422.                                                                                        | 4.2  | 30        |
| 51 | In-situ corn fiber conversion improves ethanol yield in corn dry-mill process. Industrial Crops and Products, 2018, 113, 217-224.                                                                                                              | 5.2  | 29        |
| 52 | Understanding the structural characteristics of water-soluble phenolic compounds from four<br>pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation.<br>Biotechnology for Biofuels, 2020, 13, 44. | 6.2  | 29        |
| 53 | Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial <i>Clostridium</i> community. Biotechnology and Bioengineering, 2020, 117, 2008-2022.                      | 3.3  | 27        |
| 54 | Microbial lipid production from AFEXâ,,¢ pretreated corn stover. RSC Advances, 2015, 5, 28725-28734.                                                                                                                                           | 3.6  | 26        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine<br>B and N -[4-(carbonyl) phenyl]maleimide conjugate and its application in living cell imaging. Dyes and<br>Pigments, 2017, 136, 535-542.                         | 3.7 | 26        |
| 56 | Isolation and purification of biosurfactant mannosylerythritol lipids from fermentation broth with methanol/water/n-hexane. Separation and Purification Technology, 2019, 219, 1-8.                                                                                 | 7.9 | 26        |
| 57 | Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. Bioresource Technology, 2021, 329, 124910.                                                                                           | 9.6 | 26        |
| 58 | Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using <i>Zymomonas mobilis</i> 8b. Biofuels, 2016, 7, 253-262.                                                                                               | 2.4 | 25        |
| 59 | Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresource Technology, 2020, 313, 123724.                                                          | 9.6 | 24        |
| 60 | High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass. Renewable Energy, 2022, 186, 904-913.                                                                 | 8.9 | 24        |
| 61 | Recent progress and trends in the analysis and identification of rhamnolipids. Applied Microbiology and Biotechnology, 2020, 104, 8171-8186.                                                                                                                        | 3.6 | 23        |
| 62 | Integration in a depotâ€based decentralized biorefinery system: Corn stoverâ€based cellulosic biofuel.<br>GCB Bioenergy, 2019, 11, 871-882.                                                                                                                         | 5.6 | 22        |
| 63 | <i>In situ</i> pretreatment during distillation improves corn fiber conversion and ethanol yield in the dry mill process. Green Chemistry, 2019, 21, 1080-1090.                                                                                                     | 9.0 | 21        |
| 64 | Ethanol production from mixtures of Distiller's Dried Grains with Solubles (DDGS) and corn.<br>Industrial Crops and Products, 2019, 129, 59-66.                                                                                                                     | 5.2 | 21        |
| 65 | Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Bioresource Technology, 2013, 147, 212-220.                                                                                                              | 9.6 | 19        |
| 66 | Boosting Ethanol Productivity of Zymomonas mobilis 8b in Enzymatic Hydrolysate of Dilute Acid and<br>Ammonia Pretreated Corn Stover Through Medium Optimization, High Cell Density Fermentation and<br>Cell Recycling. Frontiers in Microbiology, 2019, 10, 2316.   | 3.5 | 19        |
| 67 | Increased mixing intensity is not necessary for more efficient cellulose hydrolysis at high solid<br>loading. Bioresource Technology, 2021, 329, 124911.                                                                                                            | 9.6 | 19        |
| 68 | Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEXâ,,¢ corn stover. Bioresource Technology, 2016, 205, 24-33. | 9.6 | 17        |
| 69 | Highâ€Performance Production of Biosurfactant Rhamnolipid with Nitrogen Feeding. Journal of<br>Surfactants and Detergents, 2019, 22, 395-402.                                                                                                                       | 2.1 | 17        |
| 70 | Modified simultaneous saccharification and co-fermentation of DLC pretreated corn stover for<br>high-titer cellulosic ethanol production without water washing or detoxifying pretreated biomass.<br>Energy, 2022, 247, 123488.                                     | 8.8 | 17        |
| 71 | The Magnesium Concentration in Yeast Extracts Is a Major Determinant Affecting Ethanol<br>Fermentation Performance of Zymomonas mobilis. Frontiers in Bioengineering and Biotechnology,<br>2020, 8, 957.                                                            | 4.1 | 16        |
| 72 | Biochemical and Thermochemical Conversion of Switchgrass to Biofuels. Green Energy and Technology, 2012, , 153-185.                                                                                                                                                 | 0.6 | 14        |

| #  | Article                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Developing Clostridium diolis as a biorefinery chassis by genetic manipulation. Bioresource<br>Technology, 2020, 305, 123066.                                                                                                                                                                               | 9.6 | 14        |
| 74 | Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates. Bioresource Technology, 2021, 337, 125487.                                                                                                                                   | 9.6 | 14        |
| 75 | Understanding the toxicity of lignin-derived phenolics towards enzymatic saccharification of<br>lignocellulose for rationally developing effective in-situ mitigation strategies to maximize sugar<br>production from lignocellulosic biorefinery. Bioresource Technology, 2022, 349, 126813.               | 9.6 | 14        |
| 76 | Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover. Biotechnology and Bioengineering, 2017, 114, 1713-1720.                                                                                                        | 3.3 | 13        |
| 77 | Synthesis of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization. Cellulose, 2019, 26, 8337-8349.                                                                                                                                       | 4.9 | 13        |
| 78 | Efficient Preparation of Sophorolipids and Functionalization with Amino Acids to Furnish Potent Preservatives. Journal of Agricultural and Food Chemistry, 2021, 69, 9608-9615.                                                                                                                             | 5.2 | 12        |
| 79 | Extremely high-performance production of rhamnolipids by advanced sequential fed-batch fermentation with high cell density. Journal of Cleaner Production, 2021, 326, 129382.                                                                                                                               | 9.3 | 12        |
| 80 | TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances.<br>Biotechnology Journal, 2020, 15, 1900284.                                                                                                                                                                    | 3.5 | 11        |
| 81 | Preparation of Chitosan/Recombinant Human Collagen-Based Photo-Responsive Bioinks for 3D<br>Bioprinting. Gels, 2022, 8, 314.                                                                                                                                                                                | 4.5 | 11        |
| 82 | Metabolic and Process Engineering of Clostridium beijerinckii for Butyl Acetate Production in One<br>Step. Journal of Agricultural and Food Chemistry, 2020, 68, 9475-9487.                                                                                                                                 | 5.2 | 10        |
| 83 | Evolutionary Engineering Improved <scp>d</scp> -Glucose/Xylose Cofermentation of <i>Yarrowia<br/>lipolytica</i> . Industrial & Engineering Chemistry Research, 2020, 59, 17113-17123.                                                                                                                       | 3.7 | 10        |
| 84 | Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, 2021, 341, 125873.                                                                                                                               | 9.6 | 10        |
| 85 | A novel xanthene-based fluorescence turn-on probe for highly selective detection of Hg2+ in water samples and living cells. Journal of Molecular Structure, 2022, 1254, 132312.                                                                                                                             | 3.6 | 10        |
| 86 | Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic<br>ethanol fermentations on AFEXâ,,¢ corn stover in the Rapid Bioconversion with Integrated recycling<br>Technology process. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1261-1272. | 3.0 | 8         |
| 87 | Cellulase-added cassava ethanol process boosts ethanol titer and reduces glycerol production.<br>Industrial Crops and Products, 2020, 148, 112304.                                                                                                                                                          | 5.2 | 8         |
| 88 | Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization.<br>Bioresource Technology, 2022, 347, 126348.                                                                                                                                                          | 9.6 | 8         |
| 89 | Effects of storage temperature and time on enzymatic digestibility and fermentability of Densifying<br>lignocellulosic biomass with chemicals pretreated corn stover. Bioresource Technology, 2022, 347,<br>126359.                                                                                         | 9.6 | 8         |
| 90 | DLC(sa) and DLCA(sa) pretreatments boost the efficiency of microbial lipid production from rice straw via Trichosporon dermatis. Fuel, 2022, 309, 122117.                                                                                                                                                   | 6.4 | 7         |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Development of DLC and DLCA pretreatments with alkalis on rice straw for high titer microbial lipid production. Industrial Crops and Products, 2021, 172, 114086.                                                                                                | 5.2 | 6         |
| 92  | A highly selective turn-on fluorescence probe with large Stokes shift for detection of palladium and<br>its applications in environment water and living cells. Spectrochimica Acta - Part A: Molecular and<br>Biomolecular Spectroscopy, 2022, 267, 120500.     | 3.9 | 6         |
| 93  | Lime pretreatment of pelleted corn stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass. Renewable Energy, 2022, 192, 396-404.                                                                                        | 8.9 | 6         |
| 94  | A near-infrared fluorescence turn-on probe based on Michael addition–intramolecular cyclization<br>for specific detection of cysteine and its applications in environmental water and milk samples and<br>living cells. Analytical Methods, 2021, 13, 5369-5376. | 2.7 | 5         |
| 95  | Establishing a novel 3D printing bioinks system with recombinant human collagen. International<br>Journal of Biological Macromolecules, 2022, 211, 400-409.                                                                                                      | 7.5 | 5         |
| 96  | Integration of corn ethanol and corn stover ethanol processes for improving xylose fermentation performance. Biomass Conversion and Biorefinery, 2023, 13, 6989-6999.                                                                                            | 4.6 | 4         |
| 97  | In-situ corn fiber conversion method unlocks the role of viscosity on enhancing ethanol yield by reducing side-product glycerol. Industrial Crops and Products, 2021, 169, 113653.                                                                               | 5.2 | 4         |
| 98  | DLCA (ch) pretreatment brings economic benefits to both biomass logistics and biomass conversion for low cost cellulosic ethanol production. Fuel, 2022, 311, 122603.                                                                                            | 6.4 | 4         |
| 99  | Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces<br>cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated<br>Evolution. Bioresource Technology, 2022, 356, 127268.                | 9.6 | 4         |
| 100 | Empty Fruit Bunch from Date Palm Industries—A Sustainable Resource for Producing Biofuels and<br>Industrial Solvents. Industrial Biotechnology, 2016, 12, 235-244.                                                                                               | 0.8 | 3         |
| 101 | Chemical and thermochemical methods on lignocellulosic biorefinery. , 2020, , 101-132.                                                                                                                                                                           |     | 3         |
| 102 | AFEXâ,,¢ Pretreatment-Based Biorefinery Technologies. , 2018, , 1-16.                                                                                                                                                                                            |     | 2         |
| 103 | Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn<br>Hydrolysates. Frontiers in Bioengineering and Biotechnology, 2021, 9, 655272.                                                                           | 4.1 | 2         |
| 104 | The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains. , 2013, , 65-91.                                                                                                                                                                 |     | 1         |
| 105 | Production of High-Value Polyunsaturated Fatty Acids Using Microbial Cultures. Methods in<br>Molecular Biology, 2019, 1995, 229-248.                                                                                                                             | 0.9 | 1         |
| 106 | AFEXâ,,¢ Pretreatment-Based Biorefinery Technologies. , 2019, , 1-16.                                                                                                                                                                                            |     | 1         |