Miki Hieda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inner Nuclear Membrane Protein, SUN1, is Required for Cytoskeletal Force Generation and Focal Adhesion Maturation. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	6
2	The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Scientific Reports, 2021, 11, 5358.	3.3	10
3	The SUN1 splicing variants SUN1_888 and SUN1_916 differentially regulate nucleolar structure. Genes To Cells, 2020, 25, 730-740.	1.2	4
4	Human THO maintains the stability of repetitive DNA. Genes To Cells, 2020, 25, 334-342.	1.2	3
5	SPOP is essential for DNA–protein cross-link repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex. Molecular Biology of the Cell, 2020, 31, 478-490.	2.1	11
6	Human THO coordinates transcription termination and subsequent transcript release from the <i>HSP70</i> locus. Genes To Cells, 2019, 24, 272-283.	1.2	9
7	Signal Transduction across the Nuclear Envelope: Role of the LINC Complex in Bidirectional Signaling. Cells, 2019, 8, 124.	4.1	41
8	Xâ€rayâ€enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex. Cancer Science, 2018, 109, 1158-1165.	3.9	23
9	Detection of SUN1 Splicing Variants at the mRNA and Protein Levels in Cancer. Methods in Molecular Biology, 2018, 1840, 307-319.	0.9	1
10	Implications for Diverse Functions of the LINC Complexes Based on the Structure. Cells, 2017, 6, 3.	4.1	28
11	SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration. Nucleus, 2016, 7, 572-584.	2.2	42
12	Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli. Nucleus, 2016, 7, 68-83.	2.2	26
13	Global loss of a nuclear lamina component, lamin A/C, and <scp>LINC</scp> complex components <scp>SUN</scp> 1, <scp>SUN</scp> 2, and nesprinâ€2 in breast cancer. Cancer Medicine, 2015, 4, 1547-1557.	2.8	116
14	SUV420H2 suppresses breast cancer cell invasion through down regulation of the SH2 domain-containing focal adhesion protein tensin-3. Experimental Cell Research, 2015, 334, 90-99.	2.6	37
15	Histone Modifications Associated with Cancer Cell Migration and Invasion. Methods in Molecular Biology, 2015, 1238, 301-317.	0.9	12
16	Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Research, 2014, 16, R66.	5.0	75
17	Cancerâ€associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility <i>in vitro</i> and drives tumor formation <i>in vivo</i> . Cancer Science, 2013, 104, 889-895.	3.9	127
18	The cytoplasmic tail of heparinâ€binding EGFâ€ŀike growth factor regulates bidirectional intracellular trafficking between the plasma membrane and ER. FEBS Open Bio, 2012, 2, 339-344.	2.3	6

Miki Hieda

#	Article	IF	CITATIONS
19	Nuclear envelope-localized ECF family protein amphiregulin activates breast cancer cell migration in an EGF-like domain independent manner. Biochemical and Biophysical Research Communications, 2012, 420, 721-726.	2.1	22
20	Platelet-Derived Growth Factor Regulates Breast Cancer Progression via β-Catenin Expression. Pathobiology, 2011, 78, 253-260.	3.8	16
21	Membrane-anchored growth factor, HB-ECF, on the cell surface targeted to the inner nuclear membrane. Journal of Cell Biology, 2008, 180, 763-769.	5.2	70
22	The Carboxyl-terminal Fragment of Pro-HB-EGF Reverses Bcl6-mediated Gene Repression. Journal of Biological Chemistry, 2007, 282, 14797-14806.	3.4	48