HongruiTian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937584/publications.pdf

Version: 2024-02-01

21 papers	712 citations	17 h-index	713466 21 g-index
21	21	21	951 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Fabrication of new structures from a 3D cobalt phosphonate network: structural transformation and proton conductivity investigation. CrystEngComm, 2021, 23, 876-883.	2.6	2
2	Hollow Lindqvist-like-Shaped {V ₆ } Cluster-Based Metal–Organic Framework for the Highly Efficient Detoxification of Mustard Gas Simulant. Inorganic Chemistry, 2021, 60, 840-845.	4.0	29
3	Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorganic Chemistry Frontiers, 2021, 8, 4367-4375.	6.0	27
4	A universal strategy for fabrication and morphology control of polyoxometalate-based metal–organic frameworks. Chemical Communications, 2020, 56, 1641-1644.	4.1	11
5	A multicentre synergistic polyoxometalate-based metal–organic framework for one-step selective oxidative cleavage of β- <i>O</i> -4 lignin model compounds. Green Chemistry, 2020, 22, 248-255.	9.0	54
6	A highly stable polyoxovanadate-based Cu(<scp>i</scp>)–MOF for the carboxylative cyclization of CO ₂ with propargylic alcohols at room temperature. Green Chemistry, 2020, 22, 7513-7520.	9.0	37
7	Triazoleâ€Modified Molybdenum Oxide with High Proton Conductivity. ChemistrySelect, 2020, 5, 11890-11895.	1.5	3
8	Synthesis, Characterization, and Property Investigation of a Metal–Organic Framework Encapsulated Polyoxometalate Guests: An Advanced Inorganic Chemistry Experiment. Journal of Chemical Education, 2020, 97, 4152-4157.	2.3	9
9	A novel polyoxovanadate-based Co-MOF: highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis. Journal of Materials Chemistry A, 2020, 8, 12398-12405.	10.3	47
10	Designed Cluster Assembly of Multidimensional Titanium Coordination Polymers: Syntheses, Crystal Structure and Properties. Chemistry - A European Journal, 2018, 24, 2952-2961.	3.3	42
11	A highly stable MnII phosphonate as a highly efficient catalyst for CO2 fixation under ambient conditions. Chemical Communications, 2018, 54, 1758-1761.	4.1	40
12	Porous Anionic Uranyl–Organic Networks for Highly Efficient Cs ⁺ Adsorption and Investigation of the Mechanism. Inorganic Chemistry, 2018, 57, 4419-4426.	4.0	70
13	Metal–organic frameworks constructed from a tetrahedral silicon-based linker for selective adsorption of methylene blue. CrystEngComm, 2017, 19, 1564-1570.	2.6	22
14	A copper-phosphonate network as a high-performance heterogeneous catalyst for the CO ₂ cycloaddition reactions and alcoholysis of epoxides. Dalton Transactions, 2017, 46, 6756-6761.	3.3	45
15	A microporous Cd-MOF based on a hexavalent silicon-centred connector and luminescence sensing of small molecules. New Journal of Chemistry, 2017, 41, 1137-1141.	2.8	17
16	An ultrastable zirconium-phosphonate framework as bifunctional catalyst for highly active CO ₂ chemical transformation. Chemical Communications, 2017, 53, 1293-1296.	4.1	79
17	Interpenetrated Uranyl–Organic Frameworks with <i>bor</i> and <i>pts</i> Topology: Structure, Spectroscopy, and Computation. Inorganic Chemistry, 2017, 56, 14147-14156.	4.0	39
18	Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. Chemistry - A European Journal, 2016, 22, 15451-15457.	3.3	63

HongruiTian

#	Article	IF	CITATIONS
19	A Multifunctional Mn ^{II} Phosphonate for Rapid Separation of Methyl Orange and Electronâ€Transfer Photochromism. Chemistry - A European Journal, 2016, 22, 11652-11659.	3.3	34
20	Particular Handedness Excess through Symmetry-Breaking Crystallization of a 3D Cobalt Phosphonate. Inorganic Chemistry, 2016, 55, 537-539.	4.0	18
21	Uranyl Carboxyphosphonates Derived from Hydrothermal in Situ Ligand Reaction: Syntheses, Structures, and Computational Investigations. Inorganic Chemistry, 2015, 54, 8617-8624.	4.0	24