
SoÅ^a HermanovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micromachines for Microplastics Treatment. ACS Nanoscience Au, 2022, 2, 225-232.	4.8	18
2	Biodegradable polyester platform for extrusion-based bioprinting. Bioprinting, 2022, 26, e00198.	5.8	5
3	A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces, 2021, 13, 25102-25110.	8.0	53
4	Realâ€Time Biomonitoring Device Based on 2D Black Phosphorus and Polyaniline Nanocomposite Flexible Supercapacitors. Small, 2021, 17, e2102337.	10.0	27
5	Frontispiece: Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, .	3.3	1
6	Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, 11085-11092.	3.3	27
7	Poly(trimethylene carbonate- <i>co</i> -valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Advances, 2020, 10, 44111-44120.	3.6	7
8	Micromotors as "Motherships― A Concept for the Transport, Delivery, and Enzymatic Release of Molecular Cargo via Nanoparticles. Langmuir, 2019, 35, 10618-10624.	3.5	18
9	Micro/nanomachines: what is needed for them to become a real force in cancer therapy?. Nanoscale, 2019, 11, 6519-6532.	5.6	46
10	Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale, 2019, 11, 12124-12131.	5.6	84
11	Thiographene synthesized from fluorographene <i>via</i> xanthogenate with immobilized enzymes for environmental remediation. Nanoscale, 2019, 11, 10695-10701.	5.6	8
12	Synthesis of amphiphilic copolymers based on dendritic polyethylene grafted by polyhydroxyethylmethacrylate and polyhydroxypropylmethacrylate and their use for construction of nanoparticles. European Polymer Journal, 2019, 115, 193-200.	5.4	15
13	Polymer platforms for micro- and nanomotor fabrication. Nanoscale, 2018, 10, 7332-7342.	5.6	22
14	On the topology of highly branched polyethylenes prepared by amineâ^'imine nickel and palladium complexes: the effect of <i>ortho</i> â€aryl substituents. Polymer International, 2018, 67, 946-956.	3.1	10
15	Degradation of pet copolyesters under real and laboratory composting conditions. Journal of Material Cycles and Waste Management, 2018, 20, 414-420.	3.0	8
16	Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro. Macromolecular Research, 2018, 26, 1026-1034.	2.4	4
17	Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis. Chemistry - A European Journal, 2018, 24, 16833-16839.	3.3	8
18	Anaerobic digestion of aliphatic polyesters. Water Science and Technology, 2016, 73, 2386-2393.	2.5	14

SoÅ^a HermanovÃi

#	Article	IF	CITATIONS
19	Lipase enzymes on graphene oxide support for high-efficiency biocatalysis. Applied Materials Today, 2016, 5, 200-208.	4.3	26
20	Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film. Folia Microbiologica, 2016, 61, 91-100.	2.3	33
21	Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 2015, 7, 5852-5858.	5.6	195
22	Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge. Polymer Degradation and Stability, 2015, 111, 176-184.	5.8	22
23	Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1950-1951.	0.4	1
24	Structure and Morphology of Microbial Degraded Poly(Îμ-caprolactone)/Graphite Oxide Composite. Journal of Polymers and the Environment, 2014, 22, 190-199.	5.0	11
25	Biodegradation study on poly(<i>ε</i> â€caprolactone) with bimodal molecular weight distribution. Journal of Applied Polymer Science, 2013, 127, 4726-4735.	2.6	23
26	The Effect of Processing of Polycaprolactone Films on Degradation Process Initiated byAspergillus OryzaeLipase. International Journal of Polymer Analysis and Characterization, 2012, 17, 465-475.	1.9	9
27	Novel triazole-based aluminum complex for ring-opening polymerization of lactones. Polymer Bulletin, 2011, 67, 1751-1760.	3.3	6
28	Processing stability of polypropylene impact-copolymer during multiple extrusion – Effect of polymerization technology. Polymer Degradation and Stability, 2011, 96, 491-498.	5.8	27
29	LiYbCl ₄ (THF) ₄ . Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m700-m700.	0.2	1
30	Functionalization Conditions of PLGA-PEG-PLGA Copolymer with Itaconic Anhydride. Macromolecular Symposia, 2010, 295, 119-124.	0.7	25
31	Effect of multiple extrusion on molecular structure of polypropylene impact copolymer. Polymer Degradation and Stability, 2009, 94, 1722-1727.	5.8	15
32	Fluorosilyl-Substituted Cyclopentadienyltitanium(IV) Complexes:Â Synthesis, Structure, and Styrene Polymerization Behavior#. Organometallics, 2007, 26, 2735-2741.	2.3	14
33	The Impact of Graphite Source and the Synthesis Method on the Properties of Graphene Oxide. Key Engineering Materials, 0, 592-593, 374-377.	0.4	1
34	Ecotoxicity of Composts Containing Aliphatic-Aromatic Copolyesters. Polish Journal of Environmental Studies, 0, 24, 1497-1505.	1.2	6