Michal Zajacek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/693706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromagnetic signatures of strong-field gravity from accreting black-holes. Advances in Space Research, 2022, 69, 448-466.	2.6	5
2	Do reverberation-measured Hβ quasars provide a useful test of cosmology?. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1985-2005.	4.4	21
3	Mid-infrared Studies of Dusty Sources in the Galactic Center. Astrophysical Journal, 2022, 929, 178.	4.5	5
4	Nonthermal Emission from Fall-back Clouds in the Broad-line Region of Active Galactic Nuclei. Astrophysical Journal, 2022, 931, 39.	4.5	9
5	Consistency study of high- and low-accreting Mg <scp>ii</scp> quasars: no significant effect of the Fe <scp>ii</scp> to Mg <scp>ii</scp> flux ratio on the radius–luminosity relation dispersion. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3729-3748.	4.4	16
6	Observation of S4716—a Star with a 4 yr Orbit around Sgr A*. Astrophysical Journal, 2022, 933, 49.	4.5	17
7	Standardizing reverberation-measured Mg II time-lag quasars, by using the radius–luminosity relation, and constraining cosmological model parameters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4722-4737.	4.4	29
8	A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3145-3178.	4.4	16
9	First Observed Interaction of the Circumstellar Envelope of an S-star with the Environment of Sgr A*. Astrophysical Journal, 2021, 909, 62.	4.5	8
10	Time Delay of Mg ii Emission Response for the Luminous Quasar HE 0435-4312: toward Application of the High-accretor Radius–Luminosity Relation in Cosmology. Astrophysical Journal, 2021, 912, 10.	4.5	32
11	Enhanced Doppler Beaming for Dust-enshrouded Objects and Pulsars in the Galactic Center. Astrophysical Journal, 2021, 915, 111.	4.5	0
12	Stellar Transits across a Magnetized Accretion Torus as a Mechanism for Plasmoid Ejection. Astrophysical Journal, 2021, 917, 43.	4.5	36
13	The Apparent Tail of the Galactic Center Object G2/DSO. Astrophysical Journal, 2021, 923, 69.	4.5	10
14	Kinematic Structure of the Galactic Center S Cluster. Astrophysical Journal, 2020, 896, 100.	4.5	30
15	Time-delay Measurement of Mg ii Broad-line Response for the Highly Accreting Quasar HE 0413-4031: Implications for the Mg ii–based Radius–Luminosity Relation. Astrophysical Journal, 2020, 896, 146.	4.5	33
16	Effect of Electromagnetic Interaction on Galactic Center Flare Components. Astrophysical Journal, 2020, 897, 99.	4.5	28
17	Monitoring dusty sources in the vicinity of Sagittarius A*. Astronomy and Astrophysics, 2020, 634, A35.	5.1	20
18	Constraining the accretion flow density profile near Sgr A* using the <i>L</i> ′-band emission of the S2 star. Astronomy and Astrophysics, 2020, 644, A105.	5.1	11

MICHAL ZAJACEK

#	Article	IF	CITATIONS
19	Near- and Mid-infrared Observations in the Inner Tenth of a Parsec of the Galactic Center Detection of Proper Motion of a Filament Very Close to Sgr A*. Astrophysical Journal, 2020, 897, 28.	4.5	15
20	S62 and S4711: Indications of a Population of Faint Fast-moving Stars inside the S2 Orbit—S4711 on a 7.6 yr Orbit around Sgr A*. Astrophysical Journal, 2020, 899, 50.	4.5	57
21	Scatter Analysis along the Multidimensional Radius–Luminosity Relations for Reverberation-mapped Mg ii Sources. Astrophysical Journal, 2020, 903, 86.	4.5	22
22	Depletion of Bright Red Giants in the Galactic Center during Its Active Phases. Astrophysical Journal, 2020, 903, 140.	4.5	11
23	Time Delay Measurement of Mg ii Line in CTS C30.10 with SALT. Astrophysical Journal, 2019, 880, 46.	4.5	39
24	The â€~Red Radio Ring': ionized and molecular gas in a starburst/active galactic nucleus at z â^¼ 2.55. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1489-1500.	4.4	11
25	3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies, 2019, 7, 72.	3.0	12
26	Reverberation mapping of distant quasars: Time lag determination using different methods. Astronomische Nachrichten, 2019, 340, 577-585.	1.2	9
27	Can Reverberation-measured Quasars Be Used for Cosmology?. Astrophysical Journal, 2019, 883, 170.	4.5	51
28	New bow-shock source with bipolar morphology in the vicinity of Sgr A*. Astronomy and Astrophysics, 2019, 624, A97.	5.1	15
29	A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056?. Astronomy and Astrophysics, 2019, 630, A103.	5.1	35
30	The central light-year of the Milky Way: How stars and gas live in a relativistic environment of a super-massive black hole. Journal of Physics: Conference Series, 2019, 1258, 012019.	0.4	1
31	Constraining the charge of the Galactic centre black hole. Journal of Physics: Conference Series, 2019, 1258, 012031.	0.4	26
32	Radio spectral index distribution of SDSS-FIRST sources across optical diagnostic diagrams. Astronomy and Astrophysics, 2019, 630, A83.	5.1	21
33	Near-infrared observations of star formation and gas flows in the NUGA galaxy NGC 1365. Astronomy and Astrophysics, 2019, 622, A128.	5.1	18
34	Current and Future Applications of Reverberation-Mapped Quasars in Cosmology. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	27
35	A stellar flyâ€by close to the Galactic center: Can we detect stars on highly relativistic orbits?. Astronomische Nachrichten, 2018, 339, 324-330.	1.2	5
36	Polarization: A Method to Reveal the True Nature of the Dusty S-Cluster Object (DSO/G2). Galaxies, 2018, 6, 13.	3.0	0

MICHAL ZAJACEK

#	Article	IF	CITATIONS
37	On the charge of the Galactic centre black hole. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4408-4423.	4.4	87
38	The Milky Way's Supermassive Black Hole: How Good a Case Is It?. Foundations of Physics, 2017, 47, 553-624.	1.3	81
39	Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center. Astrophysical Journal, 2017, 845, 22.	4.5	81
40	Nature of the Galactic centre NIR-excess sources. Astronomy and Astrophysics, 2017, 602, A121.	5.1	18
41	OJ287 taken to pieces: the origin of a precessing and rotating jet. Journal of Physics: Conference Series, 2017, 942, 012005.	0.4	0
42	Polarized near-infrared light of the Dusty S-cluster Object (DSO/G2) at the Galactic center. Astronomy and Astrophysics, 2016, 593, A131.	5.1	19
43	Detection of polarized continuum emission of the Dusty S-cluster Object (DSO/G2). Proceedings of the International Astronomical Union, 2016, 11, 233-234.	0.0	1
44	Effect of an isotropic outflow from the Galactic Centre on the bow-shock evolution along the orbit. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1257-1274.	4.4	14
45	MONITORING THE DUSTY S-CLUSTER OBJECT (DSO/G2) ON ITS ORBIT TOWARD THE GALACTIC CENTER BLACK HOLE. Astrophysical Journal, 2015, 800, 125.	4.5	50
46	GALACTIC CENTER MINISPIRAL: INTERACTION MODES OF NEUTRON STARS. Acta Polytechnica, 2015, 55, 203-214.	0.6	4
47	Dust-enshrouded star near supermassive black hole: predictions for high-eccentricity passages near low-luminosity galactic nuclei. Astronomy and Astrophysics, 2014, 565, A17.	5.1	28
48	Gaseous environment in LLAGN: modes of interaction with compact star nuclear population. Proceedings of the International Astronomical Union, 2014, 10, 353-353.	0.0	0
49	The infrared K-band identification of the DSO/G2 source from VLT and Keck data. Proceedings of the International Astronomical Union, 2013, 9, 269-273.	0.0	1
50	OJ287: Deciphering the "Rosetta stone of blazarsâ~― Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	68