Christoph MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936948/publications.pdf Version: 2024-02-01

		14644	8618
163	23,348	66	146
papers	citations	h-index	g-index
213	213	213	19019
all docs	docs citations	times ranked	citing authors
			orting utilioro

#	Article	IF	CITATIONS
1	Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 2022, 28, 167-181.	4.2	23
2	The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc). Biogeosciences, 2022, 19, 957-977.	1.3	15
3	Occurrence of crop pests and diseases has largely increased in China since 1970. Nature Food, 2022, 3, 57-65.	6.2	39
4	Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nature Communications, 2022, 13, .	5.8	17
5	Global irrigation contribution to wheat and maize yield. Nature Communications, 2021, 12, 1235.	5.8	61
6	Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP5 and CMIP6 climate scenarios. Environmental Research Letters, 2021, 16, 034040.	2.2	53
7	Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences. Geoscientific Model Development, 2021, 14, 1639-1656.	1.3	6
8	Global cotton production under climate change – Implications for yield and water consumption. Hydrology and Earth System Sciences, 2021, 25, 2027-2044.	1.9	42
9	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	1.9	17
10	Large potential for crop production adaptation depends on available future varieties. Global Change Biology, 2021, 27, 3870-3882.	4.2	62
11	Effects of long-term CO2 enrichment on forage quality of extensively managed temperate grassland. Agriculture, Ecosystems and Environment, 2021, 312, 107347.	2.5	9
12	Insights on Nitrogen and Phosphorus Co‣imitation in Global Croplands From Theoretical and Modeling Fertilization Experiments. Global Biogeochemical Cycles, 2021, 35, e2020GB006915.	1.9	3
13	Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Regional Environmental Change, 2021, 21, 1.	1.4	9
14	Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environmental Research Letters, 2021, 16, 094045.	2.2	33
15	Intergenerational inequities in exposure to climate extremes. Science, 2021, 374, 158-160.	6.0	148
16	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	2.6	18
17	Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity. Ecological Modelling, 2021, 460, 109737.	1.2	2
18	Climate change impacts on renewable energy supply. Nature Climate Change, 2021, 11, 119-125.	8.1	218

Christoph Müller

#	Article	IF	CITATIONS
19	Soil organic carbon dynamics from agricultural management practices under climate change. Earth System Dynamics, 2021, 12, 1037-1055.	2.7	12
20	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	6.2	263
21	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
22	Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resources Research, 2020, 56, e2019WR026995.	1.7	66
23	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	6.2	67
24	The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO ₂ , temperature, water, and nitrogen levels (protocol) Tj ETQq0 0	0 rgBaT/O∖	verl os k 10 Tf 5
25	Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 420-421.	8.1	2
26	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	3.6	47
27	What can we learn from N ₂ O isotope data? – Analytics, processes and modelling. Rapid Communications in Mass Spectrometry, 2020, 34, e8858.	0.7	67
28	A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7071-7081.	3.3	63
29	A multi-model analysis of teleconnected crop yield variability in a range of cropping systems. Earth System Dynamics, 2020, 11, 113-128.	2.7	21
30	Emergent constraint on crop yield response to warmer temperature from field experiments. Nature Sustainability, 2020, 3, 908-916.	11.5	96
31	First process-based simulations of climate change impacts on global tea production indicate large effects in the World's major producer countries. Environmental Research Letters, 2020, 15, 034023.	2.2	15
32	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	3.6	30
33	The importance of management information and soil moisture representation for simulating tillage effects on N ₂ O emissions in LPJmL5.0-tillage. Geoscientific Model Development, 2020, 13, 3905-3923.	1.3	5
34	The GGCMI PhaseÂ2 emulators: global gridded crop model responses to changes in CO ₂ , temperature, water, and nitrogen (version 1.0). Geoscientific Model Development, 2020, 13, 3995-4018.	1.3	19
35	A meta-analysis of crop response patterns to nitrogen limitation for improved model representation. PLoS ONE, 2019, 14, e0223508.	1.1	5
36	Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE, 2019, 14, e0221862.	1.1	42

#	Article	IF	CITATIONS
37	Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). Geoscientific Model Development, 2019, 12, 2419-2440.	1.3	31
38	Freshwater resources under success and failure of the Paris climate agreement. Earth System Dynamics, 2019, 10, 205-217.	2.7	15
39	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	2.4	57
40	Dissecting the nonlinear response of maize yield to high temperature stress with modelâ€data integration. Global Change Biology, 2019, 25, 2470-2484.	4.2	56
41	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5.8	168
42	Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 2019, 10, 617-630.	2.7	22
43	Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation. Earth's Future, 2019, 7, 1464-1480.	2.4	38
44	Modelling cropping periods of grain crops at the global scale. Global and Planetary Change, 2019, 174, 35-46.	1.6	35
45	Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agricultural and Forest Meteorology, 2019, 265, 1-15.	1.9	55
46	Options to model the effects of tillage on N2O emissions at the global scale. Ecological Modelling, 2019, 392, 212-225.	1.2	9
47	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	4.2	107
48	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	4.2	312
49	Generating a rule-based global gridded tillage dataset. Earth System Science Data, 2019, 11, 823-843.	3.7	32
50	Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160455.	1.6	48
51	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Clobal Change Biology, 2018, 24, 3025-3038.	4.2	56
52	Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 2018, 4, 138-147.	4.7	226
53	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	1.9	68
54	Biomass responses in a temperate European grassland through 17Âyears of elevated <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 3875-3885.	4.2	53

Christoph Müller

#	Article	IF	CITATIONS
55	Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 2018, 159, 296-306.	3.2	122
56	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	3.2	47
57	Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments. SoftwareX, 2018, 7, 15-22.	1.2	3
58	Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environmental Research Letters, 2018, 13, 015006.	2.2	109
59	Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 2018, 11, 2789-2812.	1.3	61
60	Achieving High Crop Yields with Low Nitrogen Emissions in Global Agricultural Input Intensification. Environmental Science & Technology, 2018, 52, 13782-13791.	4.6	19
61	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ1: Model description. Geoscientific Model Development, 2018, 11, 1343-1375.	1.3	140
62	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	5.8	230
63	Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environmental Research Letters, 2018, 13, 024011.	2.2	96
64	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	2.2	38
65	Progress in modelling agricultural impacts of and adaptations to climate change. Current Opinion in Plant Biology, 2018, 45, 255-261.	3.5	39
66	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ2: Model evaluation. Geoscientific Model Development, 2018, 11, 1377-1403.	1.3	57
67	Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 2018, 11, 429-451.	1.3	39
68	Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE, 2018, 13, e0198748.	1.1	40
69	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	2.2	93
70	Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 2018, 24, 5072-5083.	4.2	111
71	Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environmental Research Letters, 2018, 13, 064007.	2.2	79
72	Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	0.4	49

#	Article	IF	CITATIONS
73	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	2.3	109
74	Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 2017, 8, 13931.	5.8	321
75	Crossâ€scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 2017, 141, 561-576.	1.7	137
76	A coupled hydrological-plant growth model for simulating the effect of elevated CO 2 on a temperate grassland. Agricultural and Forest Meteorology, 2017, 246, 42-50.	1.9	17
77	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	4.7	114
78	Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Environmental Science & Technology, 2017, 51, 365-374.	4.6	57
79	Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices. Global Environmental Change, 2017, 47, 121-132.	3.6	34
80	An AgMIP framework for improved agricultural representation in integrated assessment models. Environmental Research Letters, 2017, 12, 125003.	2.2	54
81	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	3.4	161
82	The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017, 3, 17102.	4.7	170
83	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9326-9331.	3.3	1,708
84	Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 2017, 7, 920-924.	8.1	57
85	Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 2017, 88, 10-21.	1.9	63
86	Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 2017, 42, 297-315.	3.6	418
87	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	3.6	523
88	Understanding the weather signal in national cropâ€yield variability. Earth's Future, 2017, 5, 605-616.	2.4	85
89	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	1.3	213
90	A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environmental Research Letters, 2016, 11, 123001.	2.2	13

#	Article	IF	CITATIONS
91	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	1.9	50
92	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	8.1	190
93	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	2.3	47
94	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352
95	Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications, 2016, 7, 12608.	5.8	80
96	The impact of high-end climate change on agricultural welfare. Science Advances, 2016, 2, e1501452.	4.7	118
97	Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. Journal of Plant Physiology, 2016, 203, 3-15.	1.6	41
98	Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 2016, 11, 044002.	2.2	38
99	Rapid aggregation of global gridded crop model outputs to facilitate cross-disciplinary analysis of climate change impacts in agriculture. Environmental Modelling and Software, 2016, 75, 193-201.	1.9	40
100	Implications of climate mitigation for future agricultural production. Environmental Research Letters, 2015, 10, 125004.	2.2	49
101	Simulation of the phenological development of wheat and maize at the global scale. Global Ecology and Biogeography, 2015, 24, 1018-1029.	2.7	54
102	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	2.2	216
103	Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 2015, 10, 094021.	2.2	84
104	The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 2015, 8, 261-277.	1.3	190
105	Agricultural trade and tropical deforestation: interactions and related policy options. Regional Environmental Change, 2015, 15, 1757-1772.	1.4	23
106	Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?. Environmental Science & Technology, 2015, 49, 6731-6739.	4.6	36
107	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	1.9	31
108	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	1.9	125

#	Article	IF	CITATIONS
109	The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI). ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 175-189.	0.4	3
110	Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 279-295.	0.4	2
111	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	8.1	1,544
112	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	4.2	387
113	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	0.4	122
114	Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 2014, 9, 064029.	2.2	129
115	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	3.3	568
116	Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5, 3858.	5.8	356
117	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	3.3	795
118	Impacts of Climate Change on Food Availability: Agriculture. , 2014, , 681-688.		1
119	Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution. Environmental Research Letters, 2014, 9, 111005.	2.2	31
120	Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technological Forecasting and Social Change, 2014, 81, 236-249.	6.2	83
121	Framework for participatory food security research in rural food value chains. Global Food Security, 2014, 3, 8-15.	4.0	81
122	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	4.2	525
123	Projecting future crop productivity for global economic modeling. Agricultural Economics (United) Tj ETQq1 1 0.	784314 rg 2.0	;BT/Qverlock
124	Land-use protection for climate change mitigation. Nature Climate Change, 2014, 4, 1095-1098.	8.1	164
125	Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3268-3273.	3.3	1,649
126	Hotspots of climate change impacts in sub‣aharan Africa and implications for adaptation and development. Global Change Biology, 2014, 20, 2505-2517.	4.2	82

#	Article	IF	CITATIONS
127	Fertilizing hidden hunger. Nature Climate Change, 2014, 4, 540-541.	8.1	34
128	Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?. Ecological Modelling, 2014, 288, 103-111.	1.2	38
129	Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics (United Kingdom), 2014, 45, 85-101.	2.0	172
130	Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3233-3238.	3.3	149
131	Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth's Future, 2014, 2, 83-98.	2.4	25
132	African Lessons on Climate Change Risks for Agriculture. Annual Review of Nutrition, 2013, 33, 395-411.	4.3	31
133	Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013, 3, 827-832.	8.1	1,021
134	Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 2013, 23, 130-143.	3.6	222
135	Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global and Planetary Change, 2013, 106, 1-12.	1.6	61
136	A new climate dataset for systematic assessments of climate change impacts as a function of global warming. Geoscientific Model Development, 2013, 6, 1689-1703.	1.3	24
137	Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes?. Earth System Dynamics, 2013, 4, 409-424.	2.7	7
138	The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use. Geoscientific Model Development, 2012, 5, 1297-1322.	1.3	38
139	Integrating the complexity of global change pressures on land and water. Global Food Security, 2012, 1, 88-93.	4.0	10
140	Attributing the impacts of landâ€cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. Journal of Geophysical Research, 2012, 117, .	3.3	133
141	Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. Journal of Climate, 2012, 25, 3261-3281.	1.2	313
142	Climateâ€driven simulation of global crop sowing dates. Global Ecology and Biogeography, 2012, 21, 247-259.	2.7	207
143	Measuring agricultural land-use intensity – A global analysis using a model-assisted approach. Ecological Modelling, 2012, 232, 109-118.	1.2	82

144 Food Security in a Changing Climate. , 2012, , 33-43.

#	Article	IF	CITATIONS
145	Harvesting from uncertainties. Nature Climate Change, 2011, 1, 253-254.	8.1	32
146	The effect of temporal aggregation of weather input data on crop growth models' results. Agricultural and Forest Meteorology, 2011, 151, 607-619.	1.9	41
147	Exploring global irrigation patterns: A multilevel modelling approach. Agricultural Systems, 2011, 104, 703-713.	3.2	58
148	Harvesting the sun: New estimations of the maximum population of planet Earth. Ecological Modelling, 2011, 222, 2019-2026.	1.2	26
149	Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 2011, 35, 4753-4769.	2.9	202
150	Climate change risks for African agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4313-4315.	3.3	342
151	Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology, 2010, 384, 218-231.	2.3	219
152	Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 2010, 221, 2188-2196.	1.2	119
153	Assessing 20th century climate–vegetation feedbacks of landâ€use change and natural vegetation dynamics in a fully coupled vegetation–climate model. International Journal of Climatology, 2010, 30, 2055-2065.	1.5	70
154	The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103, 316-326.	3.2	420
155	Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 2009, 36, .	1.5	444
156	Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics (United Kingdom), 2008, 39, 325-338.	2.0	160
157	Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution. Journal of Geophysical Research, 2007, 112, .	3.3	14
158	Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	31
159	Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 2007, 13, 679-706.	4.2	1,133
160	Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	27
161	Land in sight?Achievements, deficits and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems and Environment, 2006, 114, 141-158.	2.5	157
162	Quantifying geomorphological heterogeneity to assess species diversity of set-aside arable land. Agriculture, Ecosystems and Environment, 2004, 104, 587-594.	2.5	11

#	Article	IF	CITATIONS
163	The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations. Open Data Journal for Agricultural Research, 0, 3, 1-6.	1.3	7