
Arash Arami-Niya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/693683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic simulation and experimental performance of an adsorbed natural gas system under variable charging conditions. Applied Thermal Engineering, 2022, 206, 118067.	3.0	4
2	Prediction of solid formation conditions in mixed refrigerants with iso-pentane and methane at high pressures and cryogenic temperatures. Energy, 2022, 250, 123789.	4.5	3
3	Minimum ignition energies and laminar burning velocities of ammonia, HFO-1234yf, HFC-32 and their mixtures with carbon dioxide, HFC-125 and HFC-134a. Journal of Hazardous Materials, 2021, 407, 124781.	6.5	24
4	Net, Excess, and Absolute Adsorption of N ₂ , CH ₄ , and CO ₂ on Metal–Organic Frameworks of ZIF-8, MIL-101(Cr), and UiO-66 at 282–361 K and up to 12 MPa. Journal of Chemical & Engineering Data, 2021, 66, 404-414.	1.0	12
5	Viscosity of binary refrigerant mixtures of R32 + R1234yf and R32 + R1243zf. International Journal of Refrigeration, 2021, 128, 197-197.	1.8	17
6	Thermal conductivity measurements and correlations of pure R1243zf and binary mixtures of R32Â+ÂR1243zf and R32Â+ÂR1234yf. International Journal of Refrigeration, 2021, 131, 990-999.	1.8	22
7	Liquid and Dense Phase Thermal Conductivity Measurements of CO ₂ + N ₂ and CO ₂ + CH ₄ Mixtures at Temperatures from 223 K to 308 K and Pressures up to 20 MPa. Journal of Chemical & amp; Engineering Data, 2021, 66, 4018-4029.	1.0	1
8	Vapor–Liquid Equilibria for Carbon Dioxide + 3,3,3-Trifluoropropene Binary Mixtures at Temperatures between (288 and 348) K. Journal of Chemical & Engineering Data, 2021, 66, 4044-4055.	1.0	9
9	Natural gas density measurements and the impact of accuracy on process design. Fuel, 2021, 304, 121395.	3.4	7
10	Thermal conductivity measurements of refrigerant mixtures containing hydrofluorocarbons (HFC-32,) Tj ETQq0 0 Thermodynamics, 2020, 151, 106248.	0 rgBT /C 1.0	Overlock 10 Tf 20
11	Experimental and simulation study of the effect of surface functional groups decoration on CH4 and H2 storage capacity of microporous carbons. Applied Surface Science, 2020, 533, 147487.	3.1	18
12	Temperature dependence of adsorption hysteresis in flexible metal organic frameworks. Communications Chemistry, 2020, 3, .	2.0	20
13	Flexible Adsorbents at High Pressure: Observations and Correlation of ZIF-7 Stepped Sorption Isotherms for Nitrogen, Argon, and Other Gases. Langmuir, 2020, 36, 14967-14977.	1.6	10
14	Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO ₂ , CH ₄ , and O ₂ . ACS Omega, 2020, 5, 10704-10714.	1.6	10
15	Measurement and modelling of the thermodynamic properties of carbon dioxide mixtures with HFO-1234yf, HFC-125, HFC-134a, and HFC-32: vapour-liquid equilibrium, density, and heat capacity. International Journal of Refrigeration, 2020, 118, 514-528.	1.8	33
16	Viscosity Measurements of Binary and Multicomponent Refrigerant Mixtures Containing HFC-32, HFC-125, HFC-134a, HFO-1234yf, and CO ₂ . Journal of Chemical & Engineering Data, 2020, 65, 4252-4262.	1.0	19
17	Superior performance of modified pitch-based adsorbents for cyclic methane storage. Journal of Energy Storage, 2020, 28, 101251.	3.9	16
18	Comparative Study between Regression and Soft Computing Models to Maximize the Methane Storage Capacity of Anthracite-Based Adsorbents. Industrial & Engineering Chemistry Research, 2020, 59, 1875-1887.	1.8	8

Arash Arami-Niya

#	Article	IF	CITATIONS
19	Phase equilibrium studies of high-pressure natural gas mixtures with toluene for LNG applications. Fluid Phase Equilibria, 2020, 518, 112620.	1.4	5
20	Gas Diffusion and Sorption in Carbon Conversion. Energy Procedia, 2019, 158, 1792-1797.	1.8	5
21	Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin. International Journal of Coal Geology, 2019, 208, 24-36.	1.9	14
22	Measurements of helium adsorption on natural clinoptilolite at temperatures from (123.15 to 423.15) K and pressures up to 35†MPa. Separation and Purification Technology, 2019, 223, 1-9.	3.9	11
23	Temperature effect on the synthesis of iron–cobalt nano-particles using catalytic chemical vapor deposition of CO2 in thermo-gravimetric analyzer: Analytical and thermodynamic studies. Nano Structures Nano Objects, 2019, 18, 100261.	1.9	5
24	Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures: Density, vapour-liquid equilibrium, and heat capacity data and modelling. International Journal of Refrigeration, 2019, 98, 249-260.	1.8	58
25	Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH ₄ and CO ₂ from N ₂ . Journal of Materials Chemistry A, 2017, 5, 21389-21399.	5.2	67
26	Gravimetric adsorption measurements of helium on natural clinoptilolite and synthetic molecular sieves at pressures up to 3500ÂkPa. Microporous and Mesoporous Materials, 2017, 244, 218-225.	2.2	13
27	Nitrogen-Doped Carbon Foams Synthesized from Banana Peel and Zinc Complex Template for Adsorption of CO ₂ , CH ₄ , and N ₂ . Energy & Fuels, 2016, 30, 7298-7309.	2.5	52
28	Activated carbon monoliths with hierarchical pore structure from tar pitch and coal powder for the adsorption of CO2, CH4 and N2. Carbon, 2016, 103, 115-124.	5.4	116
29	Microwave-assisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption. Journal of Industrial and Engineering Chemistry, 2015, 24, 196-205.	2.9	48
30	Recovery of Liquid Fuel from the Aqueous Phase of Pyrolysis Oil Using Catalytic Conversion. Energy & Fuels, 2014, 28, 3074-3085.	2.5	35
31	Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes. Bioenergy Research, 2013, 6, 830-840.	2.2	175
32	Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: Optimisation using surface response methodology. Chemical Engineering Research and Design, 2013, 91, 2447-2456.	2.7	86
33	Anchoring a halogenated amine on the surface of a microporous activated carbon for carbon dioxide capture. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 774-779.	2.7	39
34	Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation. Journal of Analytical and Applied Pyrolysis, 2013, 104, 176-184.	2.6	100
35	Study of various curved-blade impeller geometries on power consumption in stirred vessel using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 192-201.	2.7	30
36	Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 2013, 76, 1073-1082.	4.4	178

ARASH ARAMI-NIYA

#	Article	IF	CITATIONS
37	The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis, 2013, 100, 1-11.	2.6	252
38	Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResources, 2013, 8, .	0.5	41
39	Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology. Chemical Engineering Research and Design, 2012, 90, 776-784.	2.7	140
40	The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents. Fuel, 2012, 94, 465-472.	3.4	105
41	Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres. Energy, 2012, 37, 665-672.	4.5	64
42	Application of central composite design for preparation of Kenaf fiber based activated carbon for adsorption of manganese (II) ion. African Journal of Business Management, 2011, 6, .	0.4	6
43	Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science, 2011, 257, 3936-3942.	3.1	274
44	Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chemical Engineering Research and Design, 2011, 89, 657-664.	2.7	113
45	Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 2010, 89, 197-203.	2.6	105
46	Study the effect of preparation conditions of activated carbon from palm shell for methane adsorption. , 2010, , .		0
47	Production of Palm Shell-Based Activated Carbon with More Homogeniouse Pore Size Distribution. Journal of Applied Sciences, 2010, 10, 3361-3366.	0.1	19