List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blind Attention Geometric Restraint Neural Network for Single Image Dynamic/Defocus Deblurring. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8404-8417.	11.3	10
2	Static and dynamic effects of train-track-bridge system subject to environment-induced deformation of long-span railway bridge. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237, 93-103.	2.0	8
3	Mechanism of high-speed train carbody shaking due to degradation of wheel-rail contact geometry. International Journal of Rail Transportation, 2023, 11, 289-316.	2.7	11
4	Effect of the combined centre of gravity height on the ride comfort of suspended monorail train under crosswinds. Vehicle System Dynamics, 2023, 61, 1954-1972.	3.7	2
5	Impact coefficient analysis of track beams due to moving suspended monorail vehicles. Vehicle System Dynamics, 2022, 60, 653-669.	3.7	7
6	Wheel/rail dynamic interaction induced by polygonal wear of locomotive wheels. Vehicle System Dynamics, 2022, 60, 211-235.	3.7	33
7	Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction. Vehicle System Dynamics, 2022, 60, 1806-1828.	3.7	26
8	Vibration-based damage detection of rail fastener using fully convolutional networks. Vehicle System Dynamics, 2022, 60, 2191-2210.	3.7	11
9	Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions. Vehicle System Dynamics, 2022, 60, 2167-2189.	3.7	8
10	Dynamic performance evaluation of rail fastening system based on a refined vehicle-track coupled dynamics model. Vehicle System Dynamics, 2022, 60, 2564-2586.	3.7	11
11	Dynamic modelling of traction motor bearings in locomotive-track spatially coupled dynamics system. Vehicle System Dynamics, 2022, 60, 2686-2715.	3.7	21
12	Coupled vibration analysis of suspended monorail train and curved bridge considering nonlinear wheel-track contact relation. Vehicle System Dynamics, 2022, 60, 2658-2685.	3.7	7
13	Formulation of curved beam vibrations and its extended application to train-track spatial interactions. Mechanical Systems and Signal Processing, 2022, 165, 108393.	8.0	17
14	Dynamic investigation of traction motor bearing in a locomotive under excitation from track random geometry irregularity. International Journal of Rail Transportation, 2022, 10, 72-94.	2.7	22
15	Resonance of railway vehicles induced by floating-slab tracks: mechanism and countermeasures. Vehicle System Dynamics, 2022, 60, 4098-4117.	3.7	7
16	Exact closed-form solution for free vibration of Euler-Bernoulli and Timoshenko beams with intermediate elastic supports. International Journal of Mechanical Sciences, 2022, 213, 106842.	6.7	22
17	A Wasserstein generative adversarial network-based approach for real-time track irregularity estimation using vehicle dynamic responses. Vehicle System Dynamics, 2022, 60, 4186-4205.	3.7	2
18	Experimental investigation on dynamic performance evolution of double-block ballastless track under high-cycle train loads. Engineering Structures, 2022, 254, 113872.	5.3	14

#	Article	IF	CITATIONS
19	Surface wear evolution of traction motor bearings in vibration environment of a locomotive during operation. Science China Technological Sciences, 2022, 65, 920-931.	4.0	17
20	Ground vibration induced by maglev trains running inside tunnel: Numerical modelling and experimental validation. Soil Dynamics and Earthquake Engineering, 2022, 157, 107278.	3.8	13
21	Quantitative detection of locomotive wheel polygonization under non-stationary conditions by adaptive chirp mode decomposition. Railway Engineering Science, 2022, 30, 129-147.	4.4	14
22	Polygonal wear evolution of locomotive wheels subjected to anti-slip control. Wear, 2022, 500-501, 204348.	3.1	5
23	Improved analytical method for gear body-induced deflections with tooth root crack considering structural coupling effect. Engineering Failure Analysis, 2022, 137, 106400.	4.0	8
24	Theoretical and experimental study on vibration reduction and frequency tuning of a new damped-sleeper track. Construction and Building Materials, 2022, 336, 127420.	7.2	15
25	Train and track interactions. , 2022, , 161-181.		Ο
26	Improved Dynamics Model of Locomotive Traction Motor with Elasticity of Rotor Shaft and Supporting Bearings. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	3.7	7
27	Dynamic performance of vehicle in high-speed freight EMU equipped with four double-axle bogies. Science China Technological Sciences, 2021, 64, 387-399.	4.0	3
28	Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions. Mechanical Systems and Signal Processing, 2021, 150, 107257.	8.0	85
29	Vibration-based damage detection of rail fastener clip using convolutional neural network: Experiment and simulation. Engineering Failure Analysis, 2021, 119, 104906.	4.0	29
30	Experimental assessment of the dynamic performance of slave control locomotive couplers in 20,000-tonne heavy-haul trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 1225-1236.	2.0	9
31	Dynamic response feature of electromechanical coupled drive subsystem in a locomotive excited by wheel flat. Engineering Failure Analysis, 2021, 122, 105248.	4.0	28
32	A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions. Journal of Sound and Vibration, 2021, 498, 115963.	3.9	59
33	Calibration and validation of the dynamic response of two slab track models using data from a full-scale test rig. Engineering Structures, 2021, 234, 111980.	5.3	14
34	An advanced train-slab track spatially coupled dynamics model: Theoretical methodologies and numerical applications. Journal of Sound and Vibration, 2021, 501, 116059.	3.9	34
35	Vehicle–track–tunnel dynamic interaction: a finite/infinite element modelling method. Railway Engineering Science, 2021, 29, 109-126	4.4	26
36	Experimental study on ground vibration induced by double-line subway trains and road traffic. Transportation Geotechnics, 2021, 29, 100564.	4.5	23

#	Article	IF	CITATIONS
37	Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds. Mechanical Systems and Signal Processing, 2021, 156, 107707.	8.0	16
38	An Advanced Antislip Control Algorithm for Locomotives Under Complex Friction Conditions. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	1.2	4
39	Experimental Investigation on Coupled Vibration Features of Suspended Monorail Train–Bridge System under Constant Speed and Braking Conditions. International Journal of Structural Stability and Dynamics, 2021, 21, .	2.4	2
40	Impact vibration behavior of railway vehicles: a state-of-the-art overview. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1193-1221.	3.4	54
41	An improved dynamic model of spur gear transmission considering coupling effect between gear neighboring teeth. Nonlinear Dynamics, 2021, 106, 339-357.	5.2	75
42	Sensor deploying for damage identification of vibration isolator in floating-slab track using deep residual network. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109801.	5.0	11
43	Vibration feature of spur gear transmission with non-uniform depth distribution of tooth root crack along tooth width. Engineering Failure Analysis, 2021, 129, 105713.	4.0	28
44	Dynamic performance comparison of different types of ballastless tracks using vehicle-track-subgrade coupled dynamics model. Engineering Structures, 2021, 249, 113390.	5.3	16
45	A hybrid methodology for predicting train-induced vibration on sensitive equipment in far-field buildings. Transportation Geotechnics, 2021, 31, 100682.	4.5	22
46	An unsupervised method based on convolutional variational auto-encoder and anomaly detection algorithms for light rail squat localization. Construction and Building Materials, 2021, 313, 125563.	7.2	18
47	A spectral evolution model for track geometric degradation in train–track long-term dynamics. Vehicle System Dynamics, 2020, 58, 1-27.	3.7	10
48	Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis. Vehicle System Dynamics, 2020, 58, 339-356.	3.7	20
49	Experimental investigation on the characteristics of the dynamic rail pad force and its stress distribution in the time and frequency domain. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 201-213.	2.0	7
50	High efficient dynamic analysis of vehicle–track–subgrade vertical interaction based on Green function method. Vehicle System Dynamics, 2020, 58, 1076-1100.	3.7	25
51	Field measurement of the dynamic responses of a suspended monorail train–bridge system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 1093-1108.	2.0	7
52	A novel dynamics model for railway ballastless track with medium-thick slabs. Applied Mathematical Modelling, 2020, 78, 907-931.	4.2	26
53	Analysis on the features and potential causes of wheel surface damage for heavy-haul locomotives. Engineering Failure Analysis, 2020, 109, 104292	4.0	8
54	Investigation of the vibration isolation performance of floating slab track with rubber bearings using a stochastic fractional derivative model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 992-1004.	2.0	13

#	Article	IF	CITATIONS
55	Modeling Slab Track for Vehicle –Track-Coupled Dynamics Analysis Using Spline Function Method. International Journal of Structural Stability and Dynamics, 2020, 20, 2050026.	2.4	5
56	Long-term evolution mechanism of the rail weld irregularity in metro lines based on the wear theory. Wear, 2020, 444-445, 203160.	3.1	8
57	Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions. Engineering Failure Analysis, 2020, 108, 104285.	4.0	34
58	Theoretical method of determining pier settlement limit value for China's high-speed railway bridges considering complete factors. Engineering Structures, 2020, 209, 109998.	5.3	32
59	Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways. Railway Engineering Science, 2020, 28, 213-231.	4.4	36
60	Discrete element modelling of railway ballast performance considering particle shape and rolling resistance. Railway Engineering Science, 2020, 28, 382-407.	4.4	26
61	Dynamic interaction between rail vehicles and vibration-attenuating slab tracks. Construction and Building Materials, 2020, 258, 119545.	7.2	27
62	Improvement on Curve Negotiation Performance of Suspended Monorail Vehicle Considering Flexible Guideway. International Journal of Structural Stability and Dynamics, 2020, 20, 2050057.	2.4	7
63	Calibration for discrete element modelling of railway ballast: A review. Transportation Geotechnics, 2020, 23, 100341.	4.5	63
64	Train–track coupled dynamics analysis: system spatial variation on geometry, physics and mechanics. Railway Engineering Science, 2020, 28, 36-53.	4.4	56
65	A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle. International Journal of Mechanical Sciences, 2020, 174, 105554.	6.7	23
66	Improved analytical calculation model of spur gear mesh excitations with tooth profile deviations. Mechanism and Machine Theory, 2020, 149, 103838.	4.5	138
67	Development of a track dynamics model using Mindlin plate theory and its application to coupled vehicle-floating slab track systems. Mechanical Systems and Signal Processing, 2020, 140, 106641.	8.0	29
68	An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact. Mechanical Systems and Signal Processing, 2020, 144, 106865.	8.0	25
69	Theoretical modelling of a vehicle-slab track coupled dynamics system considering longitudinal vibrations and interface interactions. Vehicle System Dynamics, 2020, , 1-22.	3.7	15
70	Damage Detection of Rail Fastening System Through Deep Learning and Vehicle-Track Coupled Dynamics. Lecture Notes in Mechanical Engineering, 2020, , 148-153.	0.4	2
71	Vehicle–Track Coupled Dynamics Models. , 2020, , 17-149		13
72	Numerical Method and Computer Simulation for Analysis of Vehicle–Track Coupled Dynamics. , 2020, ,		5

203-229.

#	Article	IF	CITATIONS
73	Experimental Validation of Vehicle–Track Coupled Dynamics Models. , 2020, , 259-283.		1
74	Nonlinear Stability of Rail Vehicles Traveling on Vibration-Attenuating Slab Tracks. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	1.2	12
75	Wear Problems of High-Speed Wheel/Rail Systems: Observations, Causes, and Countermeasures in China. Applied Mechanics Reviews, 2020, 72, .	10.1	72
76	Vibration Characteristics of Vehicle–Track Coupled System. , 2020, , 299-346.		0
77	Field Test on Vehicle–Track Coupled System Dynamics. , 2020, , 231-258.		Ο
78	Practical Applications of the Theory of Vehicle–Track Coupled Dynamics in Engineering. , 2020, , 367-406.		0
79	Analyses of Metro Train-Induced Vibration of Building Above Subway Tunnel. Lecture Notes in Civil Engineering, 2020, , 653-666.	0.4	1
80	Reliability Analysis of Rail Fastening System When a Heavy Haul Locomotive Passing Through a Small Radius Curve. Lecture Notes in Mechanical Engineering, 2020, , 328-336.	0.4	0
81	Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system. Mechanical Systems and Signal Processing, 2019, 115, 29-44.	8.0	124
82	A model for vehicle–track random interactions on effects of crosswinds and track irregularities. Vehicle System Dynamics, 2019, 57, 444-469.	3.7	13
83	Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions. Wear, 2019, 432-433, 102914.	3.1	19
84	A three-dimensional model for train-track-bridge dynamic interactions with hypothesis of wheel-rail rigid contact. Mechanical Systems and Signal Processing, 2019, 132, 471-489.	8.0	50
85	Collision derailments on bridges containing ballastless slab tracks. Engineering Failure Analysis, 2019, 105, 869-882.	4.0	16
86	A three-dimensional dynamic model for train-track interactions. Applied Mathematical Modelling, 2019, 76, 443-465.	4.2	50
87	High-Speed Train-Track-Bridge Dynamic Interaction considering Wheel-Rail Contact Nonlinearity due to Wheel Hollow Wear. Shock and Vibration, 2019, 2019, 1-18.	0.6	6
88	Ground vibrations from high-speed non-ballasted railways: numerical prediction and field experiment. , 2019, , 153-185.		0
89	Effect of hollow-worn wheels on the evolution of rail wear. Wear, 2019, 436-437, 203032.	3.1	12
90	Pre-cracking development of weld-induced squats due to plastic deformation: Five-year field monitoring and numerical analysis. International Journal of Fatigue, 2019, 127, 431-444.	5.7	17

#	Article	IF	CITATIONS
91	An efficient model for vehicle-slab track coupled dynamic analysis considering multiple slab cracks. Construction and Building Materials, 2019, 215, 557-568.	7.2	29
92	Train–track–bridge dynamic interaction: a state-of-the-art review. Vehicle System Dynamics, 2019, 57, 984-1027.	3.7	268
93	Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel. Science of the Total Environment, 2019, 668, 485-499.	8.0	131
94	Importance of load frequency in applying cyclic loads to investigate ballast deformation under high-speed train loads. Soil Dynamics and Earthquake Engineering, 2019, 120, 28-38.	3.8	48
95	Dynamic interaction of suspension-type monorail vehicle and bridge: Numerical simulation and experiment. Mechanical Systems and Signal Processing, 2019, 118, 388-407.	8.0	64
96	Dynamic Analysis on the Stiffness Enhancement Measure of the Slab End for a Discontinuous Floating Slab Track. Computing in Science and Engineering, 2019, 21, 51-59.	1.2	6
97	Effect of the drive system on locomotive dynamic characteristics using different dynamics models. Science China Technological Sciences, 2019, 62, 308-320.	4.0	11
98	Cross Wind Effects on Vehicle–Track Interactions: A Methodology for Dynamic Model Construction. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	8
99	A spatial dynamics model for heavy-haul electric locomotives considering the dynamic coupling effect of gear transmissions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 961-973.	2.0	9
100	Prediction of rail non-uniform wear – Influence of track random irregularity. Wear, 2019, 420-421, 235-244.	3.1	26
101	Establishment and validation of a locomotive–track coupled spatial dynamics model considering dynamic effect of gear transmissions. Mechanical Systems and Signal Processing, 2019, 119, 328-345.	8.0	57
102	Investigation of track settlement and ballast degradation in the high-speed railway using a full-scale laboratory test. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 869-881.	2.0	21
103	TMD design for seismic vibration control of high-pier bridges in Sichuan–Tibet Railway and its influence on running trains. Vehicle System Dynamics, 2019, 57, 207-225.	3.7	32
104	Characteristic and mechanism of structural acoustic radiation for box girder bridge in urban rail transit. Science of the Total Environment, 2018, 627, 1303-1314.	8.0	30
105	A robust non-Hertzian contact method for wheel–rail normal contact analysis. Vehicle System Dynamics, 2018, 56, 1899-1921.	3.7	32
106	Probabilistic assessment of railway vehicle-curved track systems considering track random irregularities. Vehicle System Dynamics, 2018, 56, 1552-1576.	3.7	24
107	Global Sensitivity Analysis for Vehicle–Track Interactions: Special Attention on Track Irregularities. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	6
108	Effect of Differential Ballast Settlement on Dynamic Response of Vehicle–Track Coupled Systems. International Journal of Structural Stability and Dynamics, 2018, 18, 1850091.	2.4	33

#	Article	IF	CITATIONS
109	Track Random Irregularity Analysis for Heavy-Haul Railway. , 2018, , .		1
110	Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 421-434.	2.0	42
111	Wheel–rail dynamic interaction due to rail weld irregularity in high-speed railways. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 249-261.	2.0	35
112	An advanced vehicle–slab track interaction model considering rail random irregularities. JVC/Journal of Vibration and Control, 2018, 24, 4592-4603.	2.6	31
113	Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions. Vehicle System Dynamics, 2018, 56, 1097-1117.	3.7	54
114	On use of characteristic wavelengths of track irregularities to predict track portions with deteriorated wheel/rail forces. Mechanical Systems and Signal Processing, 2018, 104, 264-278.	8.0	28
115	Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways. Structure and Infrastructure Engineering, 2018, 14, 400-410.	3.7	44
116	Formulation of Track Irregularities Boundary PSD Based on a 3-D Nonlinear Vehicle-Track Interaction Model. , 2018, , .		0
117	Investigation on Derailment of Empty Wagons of Long Freight Train during Dynamic Braking. Shock and Vibration, 2018, 2018, 1-18.	0.6	8
118	Mechanical property and damage evolution of concrete interface of ballastless track in high-speed railway: Experiment and simulation. Construction and Building Materials, 2018, 187, 460-473.	7.2	93
119	Special issue on â€~1st International Conference on Rail Transportation'. International Journal of Rail Transportation, 2018, 6, 55-56.	2.7	0
120	A coupled model for train-track-bridge stochastic analysis with consideration of spatial variation and temporal evolution. Applied Mathematical Modelling, 2018, 63, 709-731.	4.2	39
121	Effect of Polygonal Wheel on Dynamic Performances of High-Speed Vehicle-Slab Track System. , 2018, , .		0
122	Long-term prediction of track geometry degradation in high-speed vehicle–ballastless track system due to differential subgrade settlement. Soil Dynamics and Earthquake Engineering, 2018, 113, 1-11.	3.8	80
123	Effect of Differential Subgrade Settlement on Dynamic Performance of High-Speed Vehicle and Double-Block Ballastless Track Coupled System. , 2018, , .		2
124	DYNAMIC PERFORMANCE OF LOW VIBRATION SLAB TRACK ON SHARED HIGH-SPEED PASSENGER AND FREIGHT RAILWAY. Transport, 2018, 33, 669-678.	1.2	5
125	Experimental study on dynamic performance of typical nonballasted track systems using a full-scale test rig. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231, 470-481.	2.0	26
126	Dynamic Behavior Analysis of High-Speed Railway Ballast under Moving Vehicle Loads Using Discrete Element Method. International Journal of Geomechanics, 2017, 17, .	2.7	68

#	Article	IF	CITATIONS
127	Application of dynamic vibration absorbers in designing a vibration isolation track at low-frequency domain. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231, 546-557.	2.0	24
128	Extended applications of track irregularity probabilistic model and vehicle–slab track coupled model on dynamics of railway systems. Vehicle System Dynamics, 2017, 55, 1686-1706.	3.7	18
129	A new model for temporal–spatial stochastic analysis of vehicle–track coupled systems. Vehicle System Dynamics, 2017, 55, 427-448.	3.7	48
130	Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack. Engineering Failure Analysis, 2017, 82, 72-81.	4.0	84
131	Mechanical characteristics of modern tramcar–embedded track system due to differential subgrade settlement. Australian Journal of Structural Engineering, 2017, 18, 178-189.	1.1	13
132	Dynamic interaction between heavy-haul train and track structure due to increasing axle load. Australian Journal of Structural Engineering, 2017, 18, 190-203.	1.1	22
133	Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions. Journal of Sound and Vibration, 2017, 408, 220-233.	3.9	80
134	Development of a Vibration Attenuation Track at Low Frequencies for Urban Rail Transit. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 713-726.	9.8	71
135	On effects of track random irregularities on random vibrations of vehicle–track interactions. Probabilistic Engineering Mechanics, 2017, 50, 25-35.	2.7	22
136	Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities. Journal of Sound and Vibration, 2017, 407, 209-225.	3.9	57
137	A probabilistic model for track random irregularities in vehicle/track coupled dynamics. Applied Mathematical Modelling, 2017, 51, 145-158.	4.2	66
138	A novel model for determining the amplitude-wavelength limits of track irregularities accompanied by a reliability assessment in railway vehicle-track dynamics. Mechanical Systems and Signal Processing, 2017, 86, 260-277.	8.0	73
139	A locomotive–track coupled vertical dynamics model with gear transmissions. Vehicle System Dynamics, 2017, 55, 244-267.	3.7	73
140	DEM Analysis of Ballast Breakage Under Train Loads and Its Effect on Mechanical Behaviour of Railway Track. Springer Proceedings in Physics, 2017, , 1323-1333.	0.2	10
141	Numerical Investigation on Wheel-Rail Dynamic Vibration Excited by Rail Spalling in High-Speed Railway. Shock and Vibration, 2016, 2016, 1-11.	0.6	8
142	Interface Damage Assessment of Railway Slab Track Based on Reliability Techniques and Vehicle-Track Interactions. Journal of Transportation Engineering, 2016, 142, .	0.9	44
143	Analytical model for mesh stiffness calculation of spur gear pair with non-uniformly distributed tooth root crack. Engineering Failure Analysis, 2016, 66, 502-514.	4.0	93
144	Mesh stiffness evaluation of an internal spur gear pair with tooth profile shift. Science China Technological Sciences, 2016, 59, 1328-1339.	4.0	39

#	Article	lF	CITATIONS
145	Analysis on the Dynamic Performance of a High-Speed Train Running on Different Types of Ballastless Track Structures. , 2016, , .		1
146	Establishment and verification of three-dimensional dynamic model for heavy-haul train–track coupled system. Vehicle System Dynamics, 2016, 54, 1511-1537.	3.7	56
147	Vertical Vibration Characteristics of a Concrete Sleeper with Cracks in a Heavy-Haul Railway. , 2015, , .		0
148	Experimental investigation on vibration behaviour of a CRH train at speed of 350Âkm/h. International Journal of Rail Transportation, 2015, 3, 1-16.	2.7	135
149	Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track. Soil Dynamics and Earthquake Engineering, 2015, 72, 24-36.	3.8	173
150	Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction. Science China Technological Sciences, 2015, 58, 202-210.	4.0	70
151	Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway. Science China Technological Sciences, 2015, 58, 226-235.	4.0	40
152	Dynamics of high-speed train in crosswinds based on an air-train-track interaction model. Wind and Structures, an International Journal, 2015, 20, 143-168.	0.8	33
153	Effect of noise barrier on aerodynamic performance of high-speed train in crosswind. Wind and Structures, an International Journal, 2015, 20, 509-525.	0.8	14
154	Reducing rail side wear on heavy-haul railway curves based on wheel–rail dynamic interaction. Vehicle System Dynamics, 2014, 52, 440-454.	3.7	59
155	Progress on wheel-rail dynamic performance of railway curve negotiation. Journal of Traffic and Transportation Engineering (English Edition), 2014, 1, 209-220.	4.2	26
156	Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains. Wear, 2014, 314, 282-290.	3.1	79
157	Dynamic effect and safety limits of rail weld irregularity on high-speed railways. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2014, 44, 697-706.	0.5	11
158	PSD of ballastless track irregularities of high-speed railway. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2014, 44, 687-696.	0.5	41
159	é«~速é"路桥墩沉é™ë,Žé'¢è½"å•形的æ~射关系(â…): å•å…ƒæŧ弿—çŸè½"é•系统. Zhongguo	Keøuse Jish	u Koexue/Scie
160	Mapping relationship between pier settlement and rail deformation of high-speed railways-part (II): The longitudinal connected ballastless track system. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2014, 44, 778-785.	0.5	20
161	High-speed train–track–bridge dynamic interactions – Part II: experimental validation and engineering application. International Journal of Rail Transportation, 2013, 1, 25-41.	2.7	142
162	Inaugural editorial for theInternational Journal of Rail Transportation. International Journal of Rail Transportation, 2013, 1, 1-2.	2.7	1

#	Article	IF	CITATIONS
163	High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation. International Journal of Rail Transportation, 2013, 1, 3-24.	2.7	310
164	Analysis of vibration reduction characteristics and applicability of steel-spring floating-slab track. Journal of Modern Transportation, 2011, 19, 215-222.	2.5	28
165	Dynamic Response Analysis of Vertical Vehicle-Track Coupled System in Frequency Domain. , 2011, , .		0
166	Mechanism of self-excited torsional vibration of locomotive driving system. Frontiers of Mechanical Engineering in China, 2010, 5, 465-469.	0.4	14
167	Prediction of high-speed train induced ground vibration based on train-track-ground system model. Earthquake Engineering and Engineering Vibration, 2010, 9, 545-554.	2.3	95
168	Lateral Hunting Stability of Railway Vehicles Running on Elastic Track Structures. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	1.2	38
169	Simulation and Analysis for Stick-Slip Vibration of Locomotive with Hollow-Shaft Drive System. , 2009, , .		Ο
170	Aerodynamic Forces Acting on High-Speed Train inside Tunnels. , 2009, , .		0
171	Simulation and Analysis for Self-Excited Torsional Vibration of Locomotive Drive System. , 2009, , .		1
172	Fundamentals of vehicle–track coupled dynamics. Vehicle System Dynamics, 2009, 47, 1349-1376.	3.7	638
173	Train-Track-Bridge Dynamic Simulation of Reinforced T-Beam on Speed-Up Railway Line. , 2009, , .		Ο
174	Theoretical and Experimental Investigation on Nonlinear Lateral Dynamical Behavior of Railway Wagon. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2008, 44, 138.	0.5	2
175	Dynamic stress analysis of rail joint with height difference defect using finite element method. Engineering Failure Analysis, 2007, 14, 1488-1499.	4.0	65
176	Lateral interactions of trains and tracks on small-radius curves: simulation and experiment. Vehicle System Dynamics, 2006, 44, 520-530.	3.7	29
177	Study on lateral dynamic characteristics of vehicle/turnout system. Vehicle System Dynamics, 2005, 43, 285-303.	3.7	44
178	Modelling and experiment of railway ballast vibrations. Journal of Sound and Vibration, 2004, 270, 673-683.	3.9	242
179	A New Wheel/Rail Spatially Dynamic Coupling Model and its Verification. Vehicle System Dynamics, 2004, 41, 301-322.	3.7	135
180	Train/Track/Bridge Dynamic Interactions: Simulation and Applications. Vehicle System Dynamics, 2002, 37, 653-665.	3.7	45

#	Article	IF	CITATIONS
181	A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track. Vehicle System Dynamics, 1994, 23, 603-615.	3.7	281
182	Running safety evaluation of high-speed train subject to the impact of floating ice collision on bridge piers. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, O, , 095440972110100.	2.0	5
183	Effect of rotor eccentricity on the dynamic performance of a traction motor and its support bearings in a locomotive. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0, , 095440972110723.	2.0	5
184	On the safety threshold of trains running on Sichuan-Tibet Railway bridges under the influence of floating ice. Vehicle System Dynamics, 0, , 1-17.	3.7	2