Cedric Fischmeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936675/publications.pdf

Version: 2024-02-01

66343 4,631 105 42 citations h-index papers

g-index 134 134 134 3812 docs citations times ranked citing authors all docs

106344

65

#	Article	IF	CITATIONS
1	CH Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems. Angewandte Chemie - International Edition, 2010, 49, 6629-6632.	13.8	240
2	Phosphole-Containing π-Conjugated Systems: From Model Molecules to Polymer Films on Electrodes. Chemistry - A European Journal, 2001, 7, 4222-4236.	3.3	238
3	Direct amination of aryl halides with ammonia. Chemical Society Reviews, 2010, 39, 4130.	38.1	200
4	Greener solvents for ruthenium and palladium-catalysed aromatic C–H bond functionalisation. Green Chemistry, 2011, 13, 741.	9.0	167
5	Ruthenium diacetate-catalysed oxidative alkenylation of C–H bonds in air: synthesis of alkenyl N-arylpyrazoles. Green Chemistry, 2011, 13, 3075.	9.0	142
6	First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New Journal of Chemistry, 2002, 26, 1667-1670.	2.8	137
7	Electropolymerization of π-Conjugated Oligomers Containing Phosphole Cores and Terminal Thienyl Moieties: Optical and Electronic Properties. Angewandte Chemie - International Edition, 2000, 39, 1812-1815.	13.8	135
8	Diethyl carbonate as a solvent for ruthenium catalysed Câ€"H bond functionalisation. Green Chemistry, 2009, 11, 1871.	9.0	131
9	Renewable materials as precursors of linear nitrile-acid derivatives viacross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile. Green Chemistry, 2009, 11, 152-155.	9.0	118
10	Ethenolysis: A Green Catalytic Tool to Cleave Carbon–Carbon Double Bonds. Chemistry - A European Journal, 2016, 22, 12226-12244.	3.3	106
11	Allenylidene-to-Indenylidene Rearrangement in Areneâ°'Ruthenium Complexes: A Key Step to Highly Active Catalysts for Olefin Metathesis Reactions. Journal of the American Chemical Society, 2006, 128, 4079-4089.	13.7	104
12	Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds. Green Chemistry, 2011, 13, 2911.	9.0	97
13	Dimethyl Carbonate: An Ecoâ€Friendly Solvent in Rutheniumâ€Catalyzed Olefin Metathesis Transformations. ChemSusChem, 2008, 1, 813-816.	6.8	91
14	Ethenolysis of Methyl Oleate in Roomâ€Temperature Ionic Liquids. ChemSusChem, 2008, 1, 118-122.	6.8	86
15	Ruthenium(<scp>ii</scp>)-catalyzed selective monoarylation in water and sequential functionalisations of C–H bonds. Green Chemistry, 2013, 15, 67-71.	9.0	79
16	Synthesis and properties of chiral imidazolium ionic liquids with a $(1R,2S,5R)$ - (\hat{a}^2) -menthoxymethyl substituent. New Journal of Chemistry, 2007, 31, 879-892.	2.8	78
17	Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chemistry, 2011, 13, 1448.	9.0	76
18	Ene–yne cross-metathesis with ruthenium carbene catalysts. Beilstein Journal of Organic Chemistry, 2011, 7, 156-166.	2.2	73

#	Article	IF	CITATIONS
19	Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis. Green Chemistry, 2012, 14, 2179.	9.0	71
20	$\langle i \rangle Z \langle i \rangle$ Selectivity: Recent Advances in one of the Current Major Challenges of Olefin Metathesis. ChemCatChem, 2013, 5, 3436-3459.	3.7	69
21	Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. ChemSusChem, 2017, 10, 4150-4154.	6.8	66
22	A Direct Route to Bifunctional Aldehyde Derivatives via Self―and Crossâ€Metathesis of Unsaturated Aldehydes. ChemSusChem, 2009, 2, 542-545.	6.8	65
23	Efficient synthesis of aminopyridine derivatives by copper catalyzed amination reactions. Chemical Communications, 2010, 46, 925-927.	4.1	65
24	Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis. RSC Advances, 2012, 2, 9584.	3.6	65
25	A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Medicinal Chemistry Research, 2011, 20, 522-530.	2.4	64
26	Recovery of Enlarged Olefin Metathesis Catalysts by Nanofiltration in an Ecoâ€Friendly Solvent. ChemSusChem, 2008, 1, 927-933.	6.8	63
27	Simple Ruthenium Precatalyst for the Synthesis of Stilbene Derivatives and Ring-Closing Metathesis in the Presence of Styrene Initiators. Advanced Synthesis and Catalysis, 2007, 349, 546-550.	4.3	62
28	A Bidentate NHCâ^'Alkenyl Ruthenium(II) Complex via Vinyl Câ^'H Bond Activation. Organometallics, 2006, 25, 2126-2128.	2.3	60
29	New Dipyridylamine Ruthenium Complexes for Transfer Hydrogenation of Aryl Ketones in Water. Organometallics, 2010, 29, 1992-1995.	2.3	60
30	Tandem Catalytic Acrylonitrile Crossâ€Metathesis and Hydrogenation of Nitriles with Ruthenium Catalysts: Direct Access to Linear α,ωâ€Aminoesters from Renewables. ChemSusChem, 2012, 5, 1410-1414.	6.8	59
31	Allenylidene–ruthenium complexes as versatile precatalysts for alkene metathesis reactions. Journal of Molecular Catalysis A, 2004, 213, 31-37.	4.8	57
32	Efficient Iridium Catalysts for Base-Free Hydrogenation of Levulinic Acid. Organometallics, 2017, 36, 3152-3162.	2.3	56
33	A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. Green Chemistry, 2011, 13, 2258.	9.0	55
34	Cross-metathesis with acrylonitrile and applications to fatty acid derivatives. European Journal of Lipid Science and Technology, 2010, 112, 3-9.	1.5	54
35	Iridiumâ€Catalyzed Hydrogenation and Dehydrogenation of Nâ€Heterocycles in Water under Mild Conditions. ChemSusChem, 2019, 12, 2350-2354.	6.8	54
36	Chelating η6-Arene-η1-carbene Ligands in Ruthenium Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 2862-2869.	2.0	49

#	Article	IF	CITATIONS
37	First Transformation of Unsaturated Fatty Esters Involving Enyne Crossâ€Metathesis. Advanced Synthesis and Catalysis, 2009, 351, 1115-1122.	4.3	48
38	Câ€"H bond functionalisation with [RuH(codyl)2]BF4 catalyst precursor. Green Chemistry, 2011, 13, 2315.	9.0	48
39	Ruthenium–Benzylidenes and Ruthenium–Indenylidenes as Efficient Catalysts for the Hydrogenation of Aliphatic Nitriles into Primary Amines. ChemCatChem, 2012, 4, 1911-1916.	3.7	46
40	Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. Catalysis Science and Technology, 2012, 2, 1425.	4.1	45
41	Baseâ€Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts. ChemSusChem, 2019, 12, 179-184.	6.8	45
42	lonic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids. Journal of Molecular Catalysis A, 2007, 268, 127-133.	4.8	43
43	Highly efficient and economic synthesis of new substituted amino-bispyridyl derivatives via copper and palladium catalysis. Tetrahedron Letters, 2008, 49, 3471-3474.	1.4	40
44	Ruthenium–Indenylidene Olefin Metathesis Catalyst with Enhanced Thermal Stability. Chemistry - A European Journal, 2010, 16, 12255-12261.	3.3	36
45	Ruthenium and Iridium Dipyridylamine Catalysts for the Efficient Synthesis of \hat{I}^3 -Valerolactone by Transfer Hydrogenation of Levulinic Acid. Organometallics, 2017, 36, 708-713.	2.3	36
46	Direct propargylation of furan and arene by propargylic alcohols promoted by bisoxazoline–ruthenium catalysts. New Journal of Chemistry, 2005, 29, 765.	2.8	30
47	Improving Sustainability in Ene–Yne Crossâ€Metathesis for Transformation of Unsaturated Fatty Esters. ChemSusChem, 2010, 3, 1291-1297.	6.8	30
48	Rutheniumâ€Catalyzed Synthesis of 1,2â€Diketones from Alkynes. European Journal of Organic Chemistry, 2014, 2014, 5071-5077.	2.4	30
49	Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg(ii) and Zn(ii). New Journal of Chemistry, 2008, 32, 2150.	2.8	28
50	Methyl Ricinoleate as Platform Chemical for Simultaneous Production of Fine Chemicals and Polymer Precursors. ChemSusChem, 2012, 5, 2249-2254.	6.8	28
51	î⅓SR in polymers. Physica B: Condensed Matter, 2003, 326, 34-40.	2.7	27
52	Immobilisation of an ionically tagged Hoveyda catalyst on a supported ionic liquid membrane: An innovative approach for metathesis reactions in a catalytic membrane reactor. Catalysis Today, 2010, 156, 268-275.	4.4	27
53	Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: application to renewable resources. Catalysis Science and Technology, 2014, 4, 2064-2071.	4.1	25
54	New ruthenium metathesis catalysts with chelating indenylidene ligands: synthesis, characterization and reactivity. Dalton Transactions, 2012, 41, 3695.	3.3	23

#	Article	IF	CITATIONS
55	Transformations of terpenes and terpenoids <i>via</i> carbon–carbon double bond metathesis. Catalysis Science and Technology, 2018, 8, 3989-4004.	4.1	23
56	Silica and zirconia supported olefin metathesis pre-catalysts: Synthesis, catalytic activity and multiple-use in dimethyl carbonate. Journal of Molecular Catalysis A, 2012, 357, 73-80.	4.8	22
57	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catalysis Science and Technology, 2019, 9, 4077-4082.	4.1	21
58	Versatile synthesis of various conjugated aromatic homo- and copolymers. Synthetic Metals, 2001, 122, 1-5.	3.9	20
59	Synthesis and Characterization of Sterically Enlarged Hoveydaâ€Type Olefin Metathesis Catalysts. European Journal of Inorganic Chemistry, 2013, 2013, 54-60.	2.0	19
60	Ruthenium catalyzed ethenolysis of renewable oleonitrile. European Journal of Lipid Science and Technology, 2014, 116, 1583-1589.	1.5	19
61	Ruthenium-catalyzed allylation reaction in ionic liquid. Journal of Molecular Catalysis A, 2005, 237, 161-164.	4.8	18
62	Crossâ€metathesis of fatty acid methyl esters with acrolein: An entry to a variety of bifunctional compounds. European Journal of Lipid Science and Technology, 2015, 117, 209-216.	1.5	18
63	Cross metathesis of bio-sourced fatty nitriles with acrylonitrile. Monatshefte Für Chemie, 2015, 146, 1107-1113.	1.8	17
64	Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor. ChemPlusChem, 2013, 78, 728-736.	2.8	16
65	Ruthenium(<scp>ii</scp>) and iridium(<scp>iii</scp>) complexes featuring NHC–sulfonate chelate. Dalton Transactions, 2015, 44, 17467-17472.	3.3	16
66	2,2′-Dipyridylamines: more than just sister members of the bipyridine family. Applications and achievements in homogeneous catalysis and photoluminescent materials. Dalton Transactions, 2019, 48, 11599-11622.	3.3	16
67	Imidazoliumâ€Oxazoline Salts in Rutheniumâ€Catalyzed Allylic Substitution and Cross Metathesis of Formed Branched Isomers. European Journal of Inorganic Chemistry, 2010, 2010, 4752-4756.	2.0	15
68	Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catalysis Science and Technology, 2020, 10, 4820-4826.	4.1	14
69	Muon-spin relaxation study of anisotropic charge carrier motion in polyphenylene vinylene-based polymers. Journal of Physics Condensed Matter, 2002, 14, 9987-9995.	1.8	13
70	New two component catalytic system for ROMP of cycloolefins: ruthenium(methallyl)2(diphosphine)/imidazolinium salt. New Journal of Chemistry, 2003, 27, 215-217.	2.8	12
71	Silverâ€Catalyzed Hydrogenation of Ketones under Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 786-790.	4.3	12
72	Catalytic cycloisomerisation of 1,6-dienes in ionic liquids. Tetrahedron, 2008, 64, 3687-3690.	1.9	11

#	Article	IF	CITATIONS
73	Bidentate Oxazolineâ^Imine Ruthenium(II) Complexes: Intermediates in the Methanolysis/Hydration of Nitrile Groups. Organometallics, 2010, 29, 4234-4238.	2.3	11
74	Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives. Oil and Gas Science and Technology, 2016, 71, 19.	1.4	11
75	Transformations of bioâ€sourced 4â€hydroxyphenylpropanoids based on olefin metathesis. ChemCatChem, 2020, 12, 5000-5021.	3.7	11
76	Stepwise catalytic transformations of renewable feedstock arising from plant oils. European Journal of Lipid Science and Technology, 2013, 115, 490-500.	1.5	10
77	Olefin metathesis transformations in thermomorphic multicomponent solvent systems. Catalysis Communications, 2015, 63, 31-34.	3.3	10
78	Acceptorless and Baseâ€Free Dehydrogenation of Alcohols Mediated by a Dipyridylamineâ€Iridium(III) Catalyst. European Journal of Organic Chemistry, 2020, 2020, 4326-4330.	2.4	10
79	Electrogenerated Chemiluminescence in Poly(dibutoxyphenylenevinylene) Coatingsâ€. Journal of Physical Chemistry B, 2004, 108, 14368-14373.	2.6	9
80	10 Catalytic conversion of biosourced raw materials: homogeneous catalysis. , 2012, , 231-262.		7
81	Cross metathesis of unsaturated epoxides for the synthesis of polyfunctional building blocks. Beilstein Journal of Organic Chemistry, 2015, 11, 1876-1880.	2.2	7
82	First elaboration of an olefin metathesis catalytic membrane by grafting a Hoveyda–Grubbs precatalyst on zirconia membranes. Comptes Rendus Chimie, 2017, 20, 952-966.	0.5	7
83	Syntheses and characterization of molecular weight enlarged olefin metathesis pre-catalysts. Comptes Rendus Chimie, 2017, 20, 717-723.	0.5	7
84	Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes. Catalysts, 2017, 7, 365.	3.5	7
85	Tandem hydroformylation/isomerization/hydrogenation of bio-derived 1-arylbutadienes for the regioselective synthesis of branched aldehydes. Applied Catalysis A: General, 2020, 598, 117583.	4.3	7
86	Regioselective synthesis of a new [1,2,3]-triazoles directly from imidates. Journal of Heterocyclic Chemistry, 2006, 43, 499-501.	2.6	6
87	New Ruthenium Catalysts for Alkene Metathesis. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 3-27.	0.1	6
88	Diastereoselective hydrogenation of arenes and pyridines using supported ruthenium nanoparticles under mild conditions. Chemical Communications, 2022, 58, 8842-8845.	4.1	6
89	Alkene Metathesis for Transformations of Renewables. Topics in Organometallic Chemistry, 2018, , 77-102.	0.7	5
90	Cross metathesis of (-)- \hat{l}^2 -pinene, (-)-limonene and terpenoids derived from limonene with internal olefins. Applied Catalysis A: General, 2021, 623, 118284.	4.3	5

#	Article	IF	CITATIONS
91	Ortho-Metallation as a key step for the synthesis of silyl substituted Poly(p-phenylenevinylene)s. Synthetic Metals, 2001, 121, 1709-1710.	3.9	4
92	RTILs in Catalytic Olefin Metathesis Reactions. Topics in Organometallic Chemistry, 2013, , 287-305.	0.7	4
93	Functionalization of (-)- $\hat{1}^2$ -pinene and (-)-limonene via cross metathesis with symmetrical internal olefins. Catalysis Communications, 2020, 135, 105893.	3.3	4
94	Catalytic Alkene Metathesis in Ionic Liquids. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 483-501.	0.1	4
95	Singleâ€Step Sustainable Production of Hydroxyâ€Functionalized 2â€Imidazolines from Carbohydrates. ChemSusChem, 2022, 15, .	6.8	4
96	Shvo-Type Metal–Ligand Cooperative Catalysts: Tethered Î- ⁵ -Oxocyclohexadienyl Ruthenium Complexes. Organometallics, 2022, 41, 1391-1402.	2.3	3
97	New family of polyfluorene copolymers for light-emitting devices. , 2002, , .		1
98	Interest and Limitations of a Nanofiltration Membrane Reactor in a Model Ring Closing Olefin Metathesis Reaction Performed in Toluene. Procedia Engineering, 2012, 44, 304-306.	1.2	1
99	Synthesis of New Building Blocks for Light Emitting Polymers. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
100	Design of Luminescent Polymers for Leds. Materials Research Society Symposia Proceedings, 2001, 708, 521.	0.1	0
101	New routes to monomers and polymers for LEDs. , 2001, , .		0
102	Allenylidene-Ruthenium Complexes as Versatile Precatalysts for Alkene Metathesis Reactions. ChemInform, 2004, 35, no.	0.0	0
103	Direct Propargylation of Furan and Arene by Propargylic Alcohols Promoted by Bisoxazoline—Ruthenium Catalysts ChemInform, 2005, 36, no.	0.0	0
104	Synthesis of Bioactives Coumarin Derivatives, Phthalocyanines and Terminal Conjugated Dienes via a Ruthenium Catalyzed Cross-Metathesis: Application to Renewable Resources. Materials Science Forum, 0, 842, 1-45.	0.3	0
105	Synthesis of New Building Blocks for Light Emitting Polymers. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0