Aniruddha Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A study on laser cleaning and pulsed gas tungsten arc welding of Ti–3Al–2.5V alloy tubes. Journal of Materials Processing Technology, 2010, 210, 64-71.	6.3	55
2	Laser shock cleaning of radioactive particulates from glass surface. Optics and Lasers in Engineering, 2014, 57, 114-120.	3.8	32
3	Laser cleaning of tungsten ribbon. Applied Surface Science, 2014, 308, 216-220.	6.1	24
4	Laser-assisted decontamination—A wavelength dependent study. Applied Surface Science, 2008, 254, 7377-7380.	6.1	23
5	Surface preparation of Ti–3Al–2.5V alloy tubes for welding using a fiber laser. Optics and Lasers in Engineering, 2009, 47, 1259-1265.	3.8	22
6	Laser machining of micro-notches for fatigue life. Optics and Lasers in Engineering, 2010, 48, 690-697.	3.8	22
7	Particulate size and shape effects in laser cleaning of heavy metal oxide loose contamination off clad surface. Optics and Laser Technology, 2018, 106, 286-293.	4.6	19
8	Ultrasonic decontamination of prototype fast breeder reactor fuel pins. Ultrasonics, 2014, 54, 1052-1056.	3.9	15
9	Laser assisted removal of fixed radioactive contamination from metallic substrate. Nuclear Engineering and Design, 2017, 320, 183-186.	1.7	15
10	Operation of a helium-free TEA CO2 laser. Optics Communications, 2005, 248, 521-526.	2.1	14
11	Micro-Welding of Stainless Steel and Copper Foils Using a Nano -Second Pulsed Fiber Laser. Lasers in Manufacturing and Materials Processing, 2019, 6, 158-172.	2.2	14
12	Laser-Assisted Decontamination of Fuel Pins for Prototype Fast Breeder Reactor. Nuclear Technology, 2013, 182, 242-247.	1.2	12
13	Laser-assisted surface cleaning of metallic components. Pramana - Journal of Physics, 2014, 82, 237-242.	1.8	12
14	A comparative study on laser induced shock cleaning of radioactive contaminants in air and water. Optics and Laser Technology, 2018, 100, 133-138.	4.6	12
15	CO2 laser assisted removal of UO2 and ThO2 particulates from metal surface. Applied Surface Science, 2011, 257, 7263-7267.	6.1	10
16	Study of laser assisted decontamination of commonly used clad surfaces. Journal of Laser Applications, 2006, 18, 294-296.	1.7	9
17	A novel method of measuring the delay between pre-ionizing and main discharges in TE gas lasers. Measurement Science and Technology, 2001, 12, 1739-1742.	2.6	7
18	Pulsed laser-assisted removal of powder coating from galvanised steel surface: a characterisation study. Applied Physics A: Materials Science and Processing. 2015, 119, 853-858	2.3	7

ANIRUDDHA KUMAR

#	Article	IF	CITATIONS
19	Microstructural characterisation of a dissimilar weld of alloy D9 and AISI 316M stainless steel produced using a 2.5 kW CW CO 2 laser. Lasers in Engineering, 2002, 12, 117-133.	0.1	6
20	Repetitive operation of a helium-free mini TEA CO2 laser. Optics and Laser Technology, 2008, 40, 223-225.	4.6	5
21	Laser etching of austenitic stainless steels for micro-structural evaluation. Optics and Laser Technology, 2015, 69, 172-179.	4.6	5
22	Synthesis of uranium-di-oxide nanoparticles by pulsed laser ablation in ethanol and their characterisation. Nano Structures Nano Objects, 2016, 7, 75-80.	3.5	5
23	Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel. Lasers in Manufacturing and Materials Processing, 2016, 3, 191-203.	2.2	5
24	Improved efficiency of a hybrid CO2 laser as a result of increased TEM00 mode filling factor. Review of Scientific Instruments, 2004, 75, 5203-5204.	1.3	4
25	Single mode lasing from a TEA CO2 laser by the elimination of spatial hole burning effect. Optics Communications, 2005, 245, 289-293.	2.1	4
26	Polysulfone-Gd2Zr2O7 mixed-matrix membranes with superior radiation resistant properties: Fabrication and application of a membrane device for radioactive effluent treatment. Chemical Engineering Journal Advances, 2020, 1, 100006.	5.2	4
27	Laser-assisted removal of weld heat tints from stainless steel surface. Journal of Laser Applications, 2022, 34, .	1.7	4
28	Laser microwelding of stainless steel and pure aluminum foil. Journal of Laser Applications, 2022, 34, .	1.7	4
29	Efficient spiker-sustainer excitation scheme for transversely excited gas lasers. Infrared Physics and Technology, 2003, 44, 121-124.	2.9	3
30	Simple technique for alignment of a dispersive ring laser cavity. Optics and Laser Technology, 2005, 37, 1-2.	4.6	1
31	Effect of delay in the operation of helium-free TEA CO2 lasers with sequential and parallel spark preionisers. Optics and Laser Technology, 2008, 40, 1068-1071.	4.6	1
32	Parametric characterization of underwater laser ablation vis-a-vis laser-assisted standard defect simulation in sintered UO2 pellets. Journal of Nuclear Materials, 2020, 540, 152351.	2.7	1
33	On the seam welding of ultra-thin commercially pure (CP) grade-2 titanium foils. Welding International, 0, , 1-6.	0.7	1
34	A Comparative Stress Corrosion Cracking Study of Stainless Steel Sheets Marked with Laser and Conventional Mechanical Stamping. Lasers in Manufacturing and Materials Processing, 2021, 8, 409-425.	2.2	1