Hong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6935905/publications.pdf

Version: 2024-02-01

142 papers 4,660 citations

94269 37 h-index 133063 59 g-index

144 all docs 144 docs citations

times ranked

144

3230 citing authors

#	Article	IF	CITATIONS
1	Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science, 2021, 113, 101345.	11.8	264
2	Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nature Communications, 2021, 12, 2367.	5.8	193
3	Poly(Alkylâ€Terphenyl Piperidinium) lonomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^'2} . Angewandte Chemie - International Edition, 2021 7710-7718.	.,%0,	185
4	High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm ^{â^'2} and a durability of 1000 hours. Energy and Environmental Science, 2021, 14, 6338-6348.	15.6	160
5	Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15720-15732.	4.0	115
6	Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 7931-7939.	3.8	96
7	Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications. Polymer Chemistry, 2017, 8, 1381-1392.	1.9	95
8	Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2011, 36, 9151-9154.	3.8	90
9	Co-P nanoparticles supported on dandelion-like CNTs-Ni foam composite carrier as a novel catalyst for hydrogen generation from NaBH4 methanolysis. International Journal of Hydrogen Energy, 2018, 43, 8805-8814.	3.8	87
10	Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability. Journal of Membrane Science, 2019, 588, 117120.	4.1	87
11	Facile fabrication of yolk–shell structured porous Si–C microspheres as effective anode materials for Li-ion batteries. RSC Advances, 2014, 4, 71-75.	1.7	85
12	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie - International Edition, 2021, 60, 19272-19280.	7.2	85
13	High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications. Journal of Membrane Science, 2018, 552, 51-60.	4.1	79
14	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2022, 61, e202114892.	7.2	77
15	Chemically stable poly(meta-terphenyl piperidinium) with highly conductive side chain for alkaline fuel cell membranes. Journal of Membrane Science, 2020, 598, 117797.	4.1	73
16	Preparation of a new inorganic–organic composite flocculant used in solid–liquid separation for waste drilling fluid. Chemical Engineering Journal, 2011, 171, 350-356.	6.6	72
17	Highly dispersed RuCo bimetallic nanoparticles supported on carbon black: enhanced catalytic activity for hydrogen generation from NaBH4 methanolysis. Journal of Materials Science, 2018, 53, 6831-6841.	1.7	69
18	The preparation and performance of a novel spherical spider web-like structure Ru Ni / Ni foam catalyst for NaBH4 methanolysis. International Journal of Hydrogen Energy, 2019, 44, 13185-13194.	3.8	64

#	Article	IF	CITATIONS
19	Synthesis and electrocatalytic performance of MWCNT-supported Ag@Pt core–shell nanoparticles for ORR. International Journal of Hydrogen Energy, 2012, 37, 13365-13370.	3.8	63
20	In situ assembly of SiO2 nanodots/layered double hydroxide nanocomposite for the reinforcement of solution-polymerized butadiene styrene rubber/butadiene rubber. Composites Science and Technology, 2018, 158, 9-18.	3.8	61
21	High chemical stability anion exchange membrane based on poly(aryl piperidinium): Effect of monomer configuration on membrane properties. International Journal of Hydrogen Energy, 2021, 46, 18524-18533.	3.8	61
22	Chemically & Description of Membrane Science, 2021, 638, 119685.	4.1	57
23	Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications. Journal of Membrane Science, 2018, 564, 492-500.	4.1	56
24	Scalable Preparation of the Chemically Ordered Pt–Fe–Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions. ACS Applied Materials & Diterfaces, 2018, 10, 22156-22166.	4.0	54
25	Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5] undecanium) for long-lifetime anion exchange membrane applications. Journal of Membrane Science, 2019, 590, 117307.	4.1	52
26	Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 6494-6502.	3.8	51
27	Enhanced performance of ionic-liquid-coated silica/quaternized poly(2,6-dimethyl-1,4-phenylene oxide) composite membrane for anion exchange membrane fuel cells. Electrochimica Acta, 2017, 258, 124-133.	2.6	50
28	Highly Stable and Conductive Multicationic Poly(biphenyl indole) with Extender Side Chains for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 6154-6165.	2.5	47
29	Improved dielectric properties and energy storage density of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock polythiourea. Journal of Materials Science, 2017, 52, 5048-5059.		347 Td (flu 46
30	High-performing multi-walled carbon nanotubes/silica nanocomposites for elastomer application. Composites Science and Technology, 2018, 162, 23-32.	3.8	45
31	Di-piperidinium-crosslinked poly(fluorenyl- <i>co</i> -terphenyl piperidinium)s for high-performance alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 3678-3687.	5.2	45
32	Elucidating the role of alkyl chain in poly(aryl piperidinium) copolymers for anion exchange membrane fuel cells. Journal of Membrane Science, 2022, 647, 120341.	4.1	45
33	Layered double hydroxide–polyphosphazene-based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport. Journal of Materials Chemistry A, 2014, 2, 8376.	5.2	44
34	In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. Journal of Membrane Science, 2020, 595, 117509.	4.1	44
35	Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells. Journal of Membrane Science, 2022, 644, 120109.	4.1	44
36	Design and preparation of CNT@SnO2 core-shell composites with thin shell and its application for ethanol oxidation. International Journal of Hydrogen Energy, 2010, 35, 8841-8847.	3.8	42

#	Article	IF	CITATIONS
37	Robust poly(aryl piperidinium)/N-spirocyclic poly(2,6-dimethyl-1,4-phenyl) for hydroxide-exchange membranes. Journal of Membrane Science, 2019, 572, 246-254.	4.1	41
38	Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction. Electrochimica Acta, 2017, 245, 924-933.	2.6	39
39	Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane. Journal of Membrane Science, 2021, 620, 118919.	4.1	39
40	Dielectric properties of Ag@C/PVDF composites. Journal of Applied Polymer Science, 2013, 129, 3411-3416.	1.3	38
41	Combined method to prepare core–shell structured catalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 3323-3329.	3.8	37
42	Synthesis and electrocatalytic performance of MnO ₂ -promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 5371-5378.	5.2	36
43	Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochimica Acta, 2017, 236, 154-160.	2.6	36
44	Elastic and durable multiâ€cationâ€crosslinked anion exchange membrane based on poly(styreneâ€ <i>b</i> à€(ethyleneâ€ <i>co</i> â€butylene)â€ <i>b</i> â€styrene). Journal of Polymer Science, 20 2181-2196.	202568,	34
45	Anion-conducting polyelectrolytes for energy devices. Trends in Chemistry, 2022, 4, 236-249.	4.4	34
46	Study on Ultrasonic Single-Step Synthesis and Optical Properties of Nitrogen-Doped Carbon Fluorescent Quantum Dots. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 769-776.	1.0	33
47	Preparation and characterization of cross-linked polyphosphazene-crown ether membranes for alkaline fuel cells. Electrochimica Acta, 2017, 258, 311-321.	2.6	33
48	A hamburger-structure imidazolium-modified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications. Electrochimica Acta, 2018, 268, 295-303.	2.6	33
49	Gram-level synthesis of core–shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2014, 270, 34-41.	4.0	31
50	Preparation of Bush-Like Ru/NiO-Ni Foam Catalyst and Its Performance in Hydrogen Production from Sodium Borohydride Alcoholysis. Energy & Sodium Borohydride Alcoholysis.	2.5	31
51	N-spirocyclic ammonium-functionalized graphene oxide-based anion exchange membrane for fuel cells. International Journal of Hydrogen Energy, 2020, 45, 19778-19790.	3.8	31
52	Montmorillonite Modified by Cationic and Nonionic Surfactants as High-Performance Fluid-Loss-Control Additive in Oil-Based Drilling Fluids. Journal of Dispersion Science and Technology, 2015, 36, 569-576.	1.3	30
53	Preparation of dandelion-like Co–Mo–P/CNTs-Ni foam catalyst and its performance in hydrogen production by alcoholysis of sodium borohydride. International Journal of Hydrogen Energy, 2020, 45, 30443-30454.	3.8	30
54	Sulfated SnO2 modified multi-walled carbon nanotubes – A mixed proton–electron conducting support for Pt catalysts in direct ethanol fuel cells. Journal of Power Sources, 2011, 196, 3048-3053.	4.0	29

#	Article	IF	Citations
55	Effect of calcination temperature of TiO ₂ on the crystallinity and the permittivity of PVDFâ€√rFE/TiO ₂ composites. Journal of Applied Polymer Science, 2013, 129, 296-300.	1.3	29
56	Three-Decker Strategy Based on Multifunctional Layered Double Hydroxide to Realize High-Performance Hydroxide Exchange Membranes for Fuel Cell Applications. ACS Applied Materials & Interfaces, 2018, 10, 18246-18256.	4.0	29
57	Magnetic field-oriented ferroferric oxide/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes for anion exchange membrane applications. Nanoscale, 2018, 10, 18680-18689.	2.8	29
58	Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^'2} . Angewandte Chemie, 2021, 133, 7789-7797.	1.6	29
59	Novel anti-oxidative membranes based on sulfide-containing polybenzimidazole for high temperature proton exchange membrane fuel cells. European Polymer Journal, 2016, 74, 168-179.	2.6	28
60	Multication Cross-Linked Poly(<i>p</i> -terphenyl isatin) Anion Exchange Membranes for Fuel Cells: Effect of Cross-Linker Length on Membrane Performance. ACS Applied Energy Materials, 2021, 4, 14476-14487.	2.5	28
61	Robust and durable poly(aryl- <i>co</i> -aryl piperidinium) reinforced membranes for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 6587-6595.	5. 2	27
62	Methanol-tolerant carbon aerogel-supported Pt–Au catalysts for direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 873-876.	3.8	26
63	A novel membrane for DMFC - Na2Ti3O7 nanotubes/Nafion® composite membrane. International Journal of Hydrogen Energy, 2011, 36, 5088-5095.	3.8	24
64	A new method for improving the ion conductivity of anion exchange membranes by using TiO ₂ nanoparticles coated with ionic liquid. RSC Advances, 2016, 6, 96768-96777.	1.7	23
65	Zigzag PtCo nanowires modified in situ with Au atoms as efficient and durable electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2021, 489, 229425.	4.0	23
66	Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells. Journal of Membrane Science, 2022, 644, 120160.	4.1	23
67	Two-dimensional layered double hydroxides nanoplatelets assembled in situ on SiO2 nanoparticles for high-performing hydrogenated nitrile butadiene rubber. Composites Science and Technology, 2019, 182, 107742.	3.8	22
68	A new method for improving the conductivity of alkaline membrane by incorporating TiO2- ionic liquid composite particles. Electrochimica Acta, 2017, 255, 335-346.	2.6	22
69	Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochimica Acta, 2022, 403, 139500.	2.6	22
70	Preparation and performance of novel tetraphenylphosphonium-functionalized polyphosphazene membranes for alkaline fuel cells. European Polymer Journal, 2019, 114, 109-117.	2.6	21
71	In Situ Reinforcing: ZrO ₂ -Armored Hybrid Polyimide Separators for Advanced and Safe Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 6250-6257.	3.2	21
72	Ultra-robust polyimide nanofiber separators with shutdown function for advanced lithium-ion batteries. Journal of Membrane Science, 2022, 645, 120208.	4.1	21

#	Article	IF	Citations
73	Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts, 2021, 11, 1050.	1.6	20
74	Synthesis and characterization of a long side-chain double-cation crosslinked anion-exchange membrane based on poly(styrene-b-(ethylene-co-butylene)-b-styrene). International Journal of Hydrogen Energy, 2021, 46, 36301-36313.	3.8	20
75	Poly(aryl piperidinium) anion exchange membranes with cationic extender sidechain for fuel cells. Journal of Membrane Science, 2022, 653, 120448.	4.1	20
76	Synthesis and photoelectric property of poly (3-octylthiophene)/titanium dioxide nano-composite material. Journal of Materials Science: Materials in Electronics, 2010, 21, 554-561.	1.1	18
77	Surface tuning of carbon supported chemically ordered nanoparticles for promoting their catalysis toward the oxygen reduction reaction. Electrochimica Acta, 2017, 246, 671-679.	2.6	17
78	Poly tris (1-imidazolyl) benzene ionic liquids/Poly (2,6-dimethyl phenylene oxide) composite membranes for anion exchange membrane fuel cells. Journal of Materials Science, 2017, 52, 11109-11119.	1.7	17
79	Electric-field-aligned functionalized-layered double hydroxide/polyphenyl ether composite membrane for ion transport. International Journal of Hydrogen Energy, 2019, 44, 13852-13863.	3.8	17
80	Pt-based trimetallic nanocrystals with high proportions of M (M=Fe, Ni) metals for catalyzing oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 16039-16048.	3.8	17
81	Ptâ€"Co deposited on polyaniline-modified carbon for the electro-reduction of oxygen: the interaction between Ptâ€"Co nanoparticles and polyaniline. New Journal of Chemistry, 2017, 41, 6585-6592.	1.4	16
82	The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Advances, 2019, 9, 40084-40091.	1.7	16
83	Synthesis and Photoelectric Property of Poly(3-Octylthiophene)/Titanium Dioxide Hybrid. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 32-37.	1.9	15
84	Synthesis and characterization of novel nanocomposite membrane of sodium titanate/Nafion \hat{A}^{\otimes} . Materials Letters, 2011, 65, 1684-1687.	1.3	15
85	Electrorheological effect induced quaternized poly(2,6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells. RSC Advances, 2016, 6, 85486-85494.	1.7	15
86	Influence of shell thickness on the dielectric properties of composites filled with Ag@SiO ₂ nanoparticles. RSC Advances, 2016, 6, 64634-64639.	1.7	15
87	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie, 2021, 133, 19421-19429.	1.6	15
88	Crossâ€linked of poly(biphenyl pyridine) and poly(styreneâ€bâ€(ethyleneâ€coâ€butylene)â€bâ€styrene) grafted double cations for anion exchange membrane. Electrochimica Acta, 2022, 405, 139770.	with 2.6	15
89	Preparation of chitosanâ€based flocculant for high density waste drilling mud solid–liquid separation. Journal of Applied Polymer Science, 2012, 125, 2646-2651.	1.3	14
90	Highâ€Performance Ordered PdCuFe/C Intermetallic Catalyst for Electrochemical Oxygen Reduction in Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2019, 6, 3065-3070.	1.7	14

#	Article	IF	Citations
91	Highly alkaline stable anion exchange membranes from nonplanar polybenzimidazole with steric hindrance backbone. Journal of Polymer Science Part A, 2019, 57, 1087-1096.	2.5	14
92	Surface modifications of Pt-based atomically ordered nanoparticles to improve catalytic performances for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 890-895.	1.8	14
93	Hollow core–shell-structured Si–C composites as high-performance anodes for lithium-ion batteries. Materials Letters, 2015, 161, 89-92.	1.3	13
94	Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 2016, 85, 175-186.	2.6	13
95	A melamine formaldehyderesin route to in situ encapsulate Co2O3 into carbon black for enhanced oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2017, 42, 25960-25968.	3.8	13
96	Synthesis of modified, ordered mesoporous carbon-supported Pt3Cu catalyst for enhancing the oxygen reduction activity and durability. International Journal of Hydrogen Energy, 2021, 46, 37802-37813.	3.8	13
97	Synthesis and high-rate performance of spinel Li4Ti5O12 with core–shell hierarchical macro–mesoporous structure. New Journal of Chemistry, 2014, 38, 1173.	1.4	12
98	Synthesis and electrocatalytic performance of phosphotungstic acid-modified Ag@Pt/MWCNTs catalysts for oxygen reduction reaction. Journal of Applied Electrochemistry, 2016, 46, 917-928.	1.5	12
99	A mesoporous carbon-based catalyst derived from cobalt and boron co-doped melamine formaldehyde gel for oxygen reduction reaction. Electrochimica Acta, 2020, 333, 135560.	2.6	12
100	Development of a highly stable Pt-based ORR catalyst over Mn-modified polyaniline-based carbon nanofibers. New Journal of Chemistry, 2021, 45, 14608-14615.	1.4	12
101	Fully ordered L10-PtCoAu electrocatalyst derived from PtAu@CoO precursor with enhanced performance for oxygen reduction reaction. Electrochimica Acta, 2021, 384, 138266.	2.6	12
102	High-performance poly(fluorenyl aryl piperidinium)-based anion exchange membrane fuel cells with realistic hydrogen supply. Journal of Power Sources, 2021, 512, 230474.	4.0	12
103	Effect of TiO ₂ crystalline composition on the dielectric properties of TiO ₂ /P(VDFâ€₹rFE) composites. Physica Status Solidi - Rapid Research Letters, 2012, 6, 352-354.	1.2	11
104	Synthesis and characterization of poly(vinylideneâ€trifluoroethylene)/NïTiO ₂ . Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 570-573.	0.8	11
105	Chemically Ordered Pt–Co–Cu/C as Excellent Electrochemical Catalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 024507.	1.3	11
106	Impact of CuFe bimetallic core on the electrocatalytic activity and stability of Pt shell for oxygen reduction reaction. Electrochimica Acta, 2020, 350, 136205.	2.6	11
107	Palladium-Catalyzed C–P(III) Bond Formation by Coupling ArBr/ArOTf with Acylphosphines. Journal of Organic Chemistry, 2021, 86, 8987-8996.	1.7	11
108	Nickel-introduced structurally ordered PtCuNi/C as high performance electrocatalyst for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 905-911.	1.8	11

#	Article	IF	CITATIONS
109	Density Functional Theory Study of the Oxygen Reduction Reaction Mechanism on Graphene Doped with Nitrogen and a Transition Metal. ACS Omega, 2022, 7, 7066-7073.	1.6	11
110	Homogeneous and Heterogeneous Pd-Catalyzed Selective C–P Activation and Transfer Hydrogenation for "Group-Substitution―Synthesis of Trivalent Phosphines. Organic Letters, 2022, 24, 2868-2872.	2.4	11
111	Synthesis and photoelectric property of poly(3-octylthiophene)/ferric oxide complexes. Journal of Materials Science, 2010, 45, 3866-3873.	1.7	10
112	Study on Catalytic Oxygen Reduction Performance of Mo-PtCu Octahedral Catalyst. Energy & Study on Catalysts. Energy & Study & Study on Catalysts. Energy & Study	2.5	10
113	Ionic liquid modified fct-PtCo/C@ILs as high activity and durability electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 6312-6322.	3.8	10
114	Microwave-assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell. Bulletin of Materials Science, 2011, 34, 577-581.	0.8	9
115	Enhanced dielectric properties of polyvinylidene fluoride with addition of SnO ₂ nanoparticles. Physica Status Solidi - Rapid Research Letters, 2016, 10, 753-756.	1.2	9
116	Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell. lonics, 2019, 25, 5141-5152.	1.2	9
117	Synthesis and Application in Solar Cell of Poly (3-Decylthiophene)/Titanium Dioxide Hybrid. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 649-656.	1.9	8
118	Montmorillonite–Polybenzimidazole Inorganic-Organic Composite Membrane with Electric Field-Aligned Proton Transport Channel for High Temperature Proton Exchange Membranes. Polymer-Plastics Technology and Engineering, 2018, 57, 1752-1759.	1.9	8
119	Selfâ€assembled carbon nanofibers–silica nanocomposites for hydrogenated nitrile butadiene rubber reinforcement. Polymer Composites, 2021, 42, 5830-5838.	2.3	8
120	Synthesis of H2O2–CTAB dual-modified carbon black-supported Pt3Ni to improve catalytic activity for ORR. Journal of Materials Science, 2020, 55, 11241-11252.	1.7	8
121	Preparation of High Effective Flocculant for High Density Waste Drilling Mud. Journal of Environmental Protection, 2010, 01, 179-182.	0.3	8
122	All-organic Poly(butyl methacrylate)/Poly(vinylidenefluoride-trifluoroethylene) Dielectric Composites with Higher Permittivity and Low Dielectric Loss for Energy Storage Application. Polymer-Plastics Technology and Engineering, 2017, 56, 526-534.	1.9	7
123	Composite Electrocatalyst Derived from Hybrid Nitrogenâ€Containing Metal Organic Frameworks and gâ€C ₃ N ₄ Encapsulated Inâ€Situ into Porous Carbon Aerogels. ChemElectroChem, 2018, 5, 2126-2134.	1.7	7
124	Strategies for Improving Anion Exchange Membrane Fuel Cell Performance by Optimizing Electrode Conditions. Journal of the Electrochemical Society, 2022, 169, 014515.	1.3	7
125	The effect of minerals on the pyrolysis and the combustion of oil shale. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2963-2970.	1.2	6
126	Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 594-599.	2.4	5

#	Article	IF	CITATIONS
127	A Novel Metal–Organic Framework Route to Embed Co Nanoparticles into Multi-Walled Carbon Nanotubes for Effective Oxygen Reduction in Alkaline Media. Catalysts, 2017, 7, 364.	1.6	5
128	The remarkably improved filler dispersion and performance of SSBR/BR by core–shell structure SiO2@LDH nanocomposites. SN Applied Sciences, 2019, 1, 1.	1.5	5
129	Fabrication of Ultrahigh‧trength Polybenzimidazole Fibers via a Novel and Green Integrated Liquid Crystal Spinning Process. Macromolecular Materials and Engineering, 2020, 305, 1900717.	1.7	5
130	Preparation of Nano-Modified Polyacrylamide and Its Application on Solid-Liquid Separation in Waste Drilling Mud. Advances in Chemical Engineering and Science, 2011, 01, 33-36.	0.2	5
131	Chitosan-Modified Poly(2,6-dimethyl-1,4-phenylene Oxide) for Anion-Exchange Membrane in Fuel Cell Technology. Polymer-Plastics Technology and Engineering, 2018, 57, 1121-1130.	1.9	4
132	Carbon black modified with silver and low concentration of palladium as effective catalysts for electroreduction of oxygen in alkaline solutions. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 455-465.	0.8	4
133	A Nonâ€Preciousâ€Metal Catalyst Derived from a Cp ₂ â€Co ⁺ â€PBI Composite for Cathodic Oxygen Reduction under Both Acidic and Alkaline Conditions. ChemElectroChem, 2017, 4, 1117-1123.	1.7	3
134	Partial leaching effect to Pt decorated <scp>Pdâ€Fe</scp> /C nanoparticles for oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 6262-6272.	2.2	3
135	Theoretical Study of the Mechanism and Kinetics of the Oxidation of Cyclopenta[<i>a</i>]Naphthalenyl Radical C ₁₃ H ₉ with Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 6796-6804.	1.1	3
136	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2022, 134, .	1.6	3
137	Oriented molybdenum disulfide-silica/hydrogenated nitrile butadiene rubber composites: Effects of nanosheets on mechanical and dielectric properties. Chinese Journal of Aeronautics, 2023, 36, 413-422.	2.8	3
138	Studies on Proton Conductivity and Methanol Permeability of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) Blend Membranes. Materials Research Society Symposia Proceedings, 2008, 1098, 1.	0.1	2
139	Pyrene label used as a scale for sequence-controlled functionalized polymers. Polymer Chemistry, 2022, 13, 1274-1281.	1.9	2
140	MICROWAVE ABSORBING PROPERTIES OF CO/REDUCED GRAPHENE OXIDE IN KU-BAND. Functional Materials Letters, 2013, 06, 1350042.	0.7	1
141	Rücktitelbild: Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^²2} (Angew. Chem. 14/2021). Angewandte Chemie, 2021, 133, 8060-8060.	1.6	0
142	Surface Composition Engineering of PtCu Nanoframe Catalyst to Improve Electrochemical Stability for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 034507.	1.3	0