Qiuli Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6935739/publications.pdf

Version: 2024-02-01

236833 501076 1,597 28 25 28 citations h-index g-index papers 28 28 28 941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed <i>Caenorhabditis elegans</i> Chemical Research in Toxicology, 2021, 34, 1308-1318.	1.7	28
2	Neuronal GÎ \pm subunits required for the control of response to polystyrene nanoparticles in the range of Î $\frac{1}{4}$ g/L in C. elegans. Ecotoxicology and Environmental Safety, 2021, 225, 112732.	2.9	27
3	Dysregulation of G protein-coupled receptors in the intestine by nanoplastic exposure in <i>Caenorhabditis elegans</i> Environmental Science: Nano, 2021, 8, 1019-1028.	2.2	19
4	Response of G protein-coupled receptor CED-1 in germline to polystyrene nanoparticles in <i>Caenorhabditis elegans</i> . Nanoscale Advances, 2021, 3, 1997-2006.	2.2	26
5	Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans. Science of the Total Environment, 2020, 700, 134492.	3.9	40
6	Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. Environmental Pollution, 2020, 256, 113439.	3.7	69
7	The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Scientific Reports, 2020, 10, 16933.	1.6	4
8	Epigenetic response to nanopolystyrene in germline of nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2020, 206, 111404.	2.9	38
9	Arsenite-induced transgenerational glycometabolism is associated with up-regulation of H3K4me2 via inhibiting spr-5 in caenorhabditis elegans. Toxicology Letters, 2020, 326, 11-17.	0.4	43
10	Response of intestinal Gα subunits to nanopolystyrene in nematode <i>Caenorhabditis elegans</i> Environmental Science: Nano, 2020, 7, 2351-2359.	2.2	26
11	A circular RNA <i>circ_0000115</i> ii>in response to graphene oxide in nematodes. RSC Advances, 2019, 9, 13722-13735.	1.7	31
12	Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier. Ecotoxicology and Environmental Safety, 2019, 169, 1-7.	2.9	30
13	NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cellular and Molecular Immunology, 2018, 15, 27-37.	4.8	63
14	Toxicity of Graphene Oxide in Nematodes with a Deficit in the Epidermal Barrier Caused by RNA Interference Knockdown of <i>unc-52</i> Environmental Science and Technology Letters, 2018, 5, 622-628.	3.9	29
15	Coal combustion related fine particulate matter (PM _{2.5}) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicology Research, 2017, 6, 432-441.	0.9	38
16	Neuronal ERK signaling in response to graphene oxide in nematode < i>Caenorhabditis elegans < l i>. Nanotoxicology, 2017, 11, 520-533.	1.6	55
17	Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Scientific Reports, 2016, 6, 32409.	1.6	50
18	An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials, 2016, 79, 15-24.	5 . 7	111

#	Article	IF	CITATIONS
19	p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in <i>Caenorhabditis elegans</i> . Nanotoxicology, 2016, 10, 1469-1479.	1.6	73
20	Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials, 2016, 102, 277-291.	5.7	85
21	Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1175-1184.	1.7	48
22	Crucial role of intestinal barrier in the formation of transgenerational toxicity in quantum dot exposed nematodes Caenorhabditis elegans. RSC Advances, 2015, 5, 94257-94266.	1.7	40
23	A microRNAs–mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Advances, 2015, 5, 92394-92405.	1.7	40
24	Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale, 2014, 6, 5894.	2.8	115
25	Response of MicroRNAs to <i>In Vitro</i> Treatment with Graphene Oxide. ACS Nano, 2014, 8, 2100-2110.	7.3	91
26	microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1401-1410.	1.7	70
27	Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale, 2013, 5, 9934.	2.8	170
28	Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Advances, 2013, 3, 5741.	1.7	138