Jiang-Ping Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6935730/publications.pdf

Version: 2024-02-01

361413 361022 1,618 68 20 35 citations h-index g-index papers 71 71 71 2713 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing reveals the diversity and biology of valve cells in cardiac valve disease. Journal of Cardiology, 2023, 81, 49-56.	1.9	2
2	Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Failure Reviews, 2022, 27, 71-91.	3.9	15
3	Novel plasma biomarkers predicting biventricular involvement in arrhythmogenic right ventricular cardiomyopathy. American Heart Journal, 2022, 244, 66-76.	2.7	6
4	Multifaceted Spatial and Functional Zonation of Cardiac Cells in Adult Human Heart. Circulation, 2022, 145, 315-318.	1.6	8
5	Myocardial Rev-erb–Mediated Diurnal Metabolic Rhythm and Obesity Paradox. Circulation, 2022, 145, 448-464.	1.6	31
6	The application of autopsy and explanted heart samples in scientific research. Cardiovascular Pathology, 2022, 59, 107424.	1.6	1
7	Novel Risk Prediction Model to Determine Adverse Heart Failure Outcomes in Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American Heart Association, 2022, $11,\ldots$	3.7	5
8	Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics, 2021, 11, 5939-5954.	10.0	8
9	Optimal cut-off value of elevated cardiac troponin concentrations for myocardial injury predicts clinical outcomes in adult patients with COVID-19: a dose–response analysis protocol for systematic review. BMJ Open, 2021, 11, e046575.	1.9	1
10	Investigation of Lipid Metabolism in Dynamic Progression of Coronary Artery Atherosclerosis of Humans by Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2021, 93, 3839-3847.	6.5	7
11	Cadherin 2-Related Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003097.	3. 6	21
12	Single-Cell Transcriptomic Atlas of Different Human Cardiac Arteries Identifies Cell Types Associated With Vascular Physiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1408-1427.	2.4	48
13	Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Frontiers in Pharmacology, 2021, 12, 623674.	3.5	12
14	Single-Cell Transcriptomics Reveals the Cellular Heterogeneity of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 643519.	2.4	8
15	Neuraminidase 1 is a driver of experimental cardiac hypertrophy. European Heart Journal, 2021, 42, 3770-3782.	2.2	29
16	Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases. Circulation Journal, 2021, 85, 1416-1425.	1.6	13
17	Intraventricular flow visualization in different heart failure stages with blood pump support in a mock circulatory loop. International Journal of Artificial Organs, 2021, 44, 773-782.	1.4	O
18	Phenotypes of Cardiovascular Diseases: Current Status and Future Perspectives. Phenomics, 2021, 1, 229-241.	2.9	8

#	Article	IF	Citations
19	Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation, 2021, 144, 1600-1611.	1.6	43
20	PRMT5 Prevents Dilated Cardiomyopathy via Suppression of Protein O-GlcNAcylation. Circulation Research, 2021, 129, 857-871.	4.5	14
21	Identification of reference genes for gene expression studies among different developmental stages of murine hearts. BMC Developmental Biology, 2021, 21, 13.	2.1	7
22	Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Research in Cardiology, 2021, 116, 55.	5.9	87
23	Application of Homograft Valved Conduit in Cardiac Surgery. Frontiers in Cardiovascular Medicine, 2021, 8, 740871.	2.4	4
24	Efficacy of Catheter Ablation for Atrial Arrhythmias in Patients with Arrhythmogenic Right Ventricular Cardiomyopathyâ€"A Multicenter Study. Journal of Clinical Medicine, 2021, 10, 4962.	2.4	7
25	Plasma Metabolites–Based Prediction in Cardiac Surgery–Associated Acute Kidney Injury. Journal of the American Heart Association, 2021, 10, e021825.	3.7	13
26	Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Research in Cardiology, 2021, 116, 64.	5.9	15
27	Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nature Cell Biology, 2020, 22, 108-119.	10.3	270
28	Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Medicine, 2020, 18, 2.	5. 5	65
29	Novel Potential Biomarker of Adult Cardiac Surgery-Associated Acute Kidney Injury. Frontiers in Physiology, 2020, 11, 587204.	2.8	9
30	Inhibition of Bcl2L12 Attenuates Eosinophilia-Related Inflammation in the Heart. Frontiers in Immunology, 2020, 11, 1955.	4.8	2
31	Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis. Circulation, 2020, 142, 384-400.	1.6	90
32	Plasma testosterone and arrhythmic events in male patients with arrhythmogenic right ventricular cardiomyopathy. ESC Heart Failure, 2020, 7, 1547-1559.	3.1	12
33	Elevated plasma \hat{l}^2 -hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Science Translational Medicine, 2020, 12, .	12.4	54
34	Metabolic remodeling of substrate utilization during heart failure progression. Heart Failure Reviews, 2019, 24, 143-154.	3.9	37
35	Outcome and Pathological Characteristics of Primary Malignant Cardiac Tumors. International Heart Journal, 2019, 60, 938-943.	1.0	5
36	The homozygous variant c.245G > A/p.G82D in PNPLA2 is associated with arrhythmogenic cardiomyopathy phenotypic manifestations. Clinical Genetics, 2019, 96, 532-540.	2.0	5

#	Article	IF	Citations
37	Clinical Characteristics of Patients with a Right Ventricular Thrombus in Arrhythmogenic Right Ventricular Cardiomyopathy. Thrombosis and Haemostasis, 2019, 119, 1373-1378.	3.4	15
38	Proteomic profiling of key transcription factors in the process of neonatal mouse cardiac regeneration capacity loss. Cell Biology International, 2019, 43, 1435-1442.	3.0	3
39	Immune cell diversity contributes to the pathogenesis of myocarditis. Heart Failure Reviews, 2019, 24, 1019-1030.	3.9	18
40	A novel genotype-based clinicopathology classification of arrhythmogenic cardiomyopathy provides novel insights into disease progression. European Heart Journal, 2019, 40, 1690-1703.	2.2	59
41	RhoE Fine-Tunes Inflammatory Response in Myocardial Infarction. Circulation, 2019, 139, 1185-1198.	1.6	43
42	Sarcomere variants in arrhythmogenic cardiomyopathy: Pathogenic factor or bystander?. Gene, 2019, 687, 82-89.	2.2	7
43	Endomyocardial biopsy in differential diagnosis between arrhythmogenic right ventricular cardiomyopathy and dilated cardiomyopathy: an in vitro simulated study. Cardiovascular Pathology, 2018, 34, 15-21.	1.6	5
44	Vitamin D receptor restricts T helper 2-biased inflammation in the heart. Cardiovascular Research, 2018, 114, 870-879.	3.8	19
45	Combinational Biomarkers for Atrial Fibrillation Derived from Atrial Appendage and Plasma Metabolomics Analysis. Scientific Reports, 2018, 8, 16930.	3.3	21
46	Bcl2-Like Protein 12 Is Required for the Aberrant T Helper-2 Polarization in the Heart by Enhancing Interleukin-4 Expression and Compromising Apoptotic Machinery in CD4+ T Cells. Circulation, 2018, 138, 2559-2568.	1.6	19
47	A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine, 2018, 16, 288.	4.4	40
48	Comparing coronary artery fibromuscular dysplasia with coronary atherosclerosis: from clinical to histopathological characteristics. Cardiovascular Pathology, 2018, 35, 57-63.	1.6	4
49	HDAC11 regulates interleukin-13 expression in CD4+ T cells in the heart. Journal of Molecular and Cellular Cardiology, 2018, 122, 1-10.	1.9	17
50	Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing. Genes, 2018, 9, 86.	2.4	7
51	Absence of a primary role for <i>TTN</i> missense variants in arrhythmogenic cardiomyopathy: From a clinical and pathological perspective. Clinical Cardiology, 2018, 41, 615-622.	1.8	7
52	A novel mutation of dystrophin in a Becker muscular dystrophy family with severe cardiac involvement: from genetics to clinicopathology. Cardiovascular Pathology, 2018, 36, 64-70.	1.6	3
53	MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. Journal of Translational Medicine, 2018, 16, 161.	4.4	42
54	Remodelling of myocardial intercalated disc protein connexin 43 causes increased susceptibility to malignant arrhythmias in ARVC/D patients. Forensic Science International, 2017, 275, 14-22.	2.2	15

#	Article	IF	CITATIONS
55	Selection of reference genes for gene expression studies in heart failure for left and right ventricles. Gene, 2017, 620, 30-35.	2.2	21
56	Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Scientific Reports, 2017, 7, 1500.	3.3	10
57	Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics. Hypertension, 2017, 70, 324-333.	2.7	17
58	MicroRNA-98 plays a critical role in experimental myocarditis. International Journal of Cardiology, 2017, 229, 75-81.	1.7	27
59	Comprehensive Myocardial Proteogenomics Profiling Reveals C/EBPÎ \pm as the Key Factor in the Lipid Storage of ARVC. Journal of Proteome Research, 2017, 16, 2863-2876.	3.7	23
60	Micro RNA-98 suppresses interleukin-10 in peripheral B cells in patient post-cardio transplantation. Oncotarget, 2017, 8, 28237-28246.	1.8	8
61	Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart. Scientific Reports, 2016, 6, 20077.	3.3	39
62	Processing of the explanted heart. North American Journal of Medical Sciences, 2014, 6, 613.	1.7	4
63	Treatment of canine asthma by high selective vagotomy. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 683-689.	0.8	14
64	Insulin-like Growth Factor-2 Enhances Functions of Antigen (Ag)-specific Regulatory B Cells. Journal of Biological Chemistry, 2014, 289, 17941-17950.	3.4	24
65	Insulin-like growth factor 2 enhances regulatory T-cell functions and suppresses food allergy in an experimental model. Journal of Allergy and Clinical Immunology, 2014, 133, 1702-1708.e5.	2.9	46
66	Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 2014, 4, 7583.	3.3	49
67	Mast cell-derived serine proteinase regulates T helper 2 polarization. Scientific Reports, 2014, 4, 4649.	3.3	20
68	Corticotropin releasing hormone activates <scp>CD</scp> 14 ⁺ cells to induce endothelial barrier dysfunction. Cell Biology International, 2013, 37, 1055-1060.	3.0	9