Sc Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/69357/sc-lee-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,691 90 137 333 h-index g-index citations papers 7.8 25,450 7.13 353 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
333	Metal-Organic Frameworks for NO Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology <i>Small</i> , 2022 , e2105484	11	3
332	Tuning the nitrogen contents in carbon matrix encapsulating Co nanoparticles for promoting formaldehyde removal through Mott-Schottky effect. <i>Applied Surface Science</i> , 2022 , 583, 152552	6.7	2
331	Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO-OV surface. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127217	12.8	6
330	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl <i>Nature Communications</i> , 2022 , 13, 939	17.4	2
329	Unraveling the Reaction Mechanism of HCHO Catalytic Oxidation on Pristine Co3O4 (110) Surface: A Theoretical Study. <i>Catalysts</i> , 2022 , 12, 560	4	
328	Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in South China. <i>Environmental Science & Compound Site</i> in South China.	10.3	2
327	Chemical characteristics and sources of nitrogen-containing organic compounds at a regional site in the North China Plain during the transition period of autumn and winter. <i>Science of the Total Environment</i> , 2021 , 151451	10.2	1
326	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. <i>Advanced Science</i> , 2021 , 8, e2102376	13.6	3
325	FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127593	12.8	2
324	Constructing Pd/Ferroelectric Bi4Ti3O12 Nanoflake Interfaces for O2 Activation and Boosting NO Photo-oxidation. <i>Applied Catalysis B: Environmental</i> , 2021 , 302, 120876	21.8	4
323	Formaldehyde Oxidation over Co@N-Doped Carbon at Room Temperature: Tunable Co Size and Intensified Surface Electron Density. <i>ACS ES&T Engineering</i> , 2021 , 1, 917-927		3
322	Characteristics and source apportionment of volatile organic compounds (VOCs) at a coastal site in Hong Kong. <i>Science of the Total Environment</i> , 2021 , 777, 146241	10.2	11
321	Comparison of vehicle emissions by EMFAC-HK model and tunnel measurement in Hong Kong. <i>Atmospheric Environment</i> , 2021 , 256, 118452	5.3	O
320	Chemical Composition of Gas and Particle Phase Products of Toluene Photooxidation Reaction under High OH Exposure Condition. <i>Atmosphere</i> , 2021 , 12, 915	2.7	1
319	Characterization of an indoor environmental chamber and identification of C1t14 OVOCs during isoprene ozonolysis. <i>Indoor and Built Environment</i> , 2021 , 30, 554-564	1.8	1
318	Chemical etching fabrication of uniform mesoporous Bi@Bi2O3 nanospheres with enhanced visible light-induced photocatalytic oxidation performance for NOx. <i>Chemical Engineering Journal</i> , 2021 , 406, 126910	14.7	20
317	Chemical and toxicological characterization of particulate emissions from diesel vehicles. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124613	12.8	18

316	The characteristics and sources of roadside VOCs in Hong Kong: Effect of the LPG catalytic converter replacement programme. <i>Science of the Total Environment</i> , 2021 , 757, 143811	10.2	4
315	Improved Oxygen Activation over a Carbon/CoO Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. <i>Environmental Science & Environmental Scien</i>	10.3	24
314	Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NOx oxidation: Intensified hot-electron transfer and reactive oxygen species generation. <i>Chemical Engineering Journal</i> , 2021 , 420, 129814	14.7	8
313	Characteristics of particle emissions from light duty diesel vehicle fueled with ultralow sulphur diesel and biodiesel blend. <i>Atmospheric Pollution Research</i> , 2021 , 12, 101169	4.5	2
312	The chemical composition and toxicological effects of fine particulate matter (PM) emitted from different cooking styles. <i>Environmental Pollution</i> , 2021 , 288, 117754	9.3	10
311	Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer. <i>Applied Surface Science</i> , 2021 , 570, 151146	6.7	5
310	Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7\(\mathbb{B}\) hollow nanocubes for NOx removal. <i>Environmental Science: Nano</i> , 2021 , 8, 1927-1933	7.1	3
309	Effects of indoor activities and outdoor penetration on PM and associated organic/elemental carbon at residential homes in four Chinese cities during winter. <i>Science of the Total Environment</i> , 2020 , 739, 139684	10.2	7
308	Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5425-5436	6.8	6
307	A Review of Co3O4-based Catalysts for Formaldehyde Oxidation at Low Temperature: Effect Parameters and Reaction Mechanism. <i>Aerosol Science and Engineering</i> , 2020 , 4, 147-168	1.6	2
306	Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6470-6478	3.9	14
305	Examining the physical and chemical contributions to size spectrum evolution during the development of hazes. <i>Scientific Reports</i> , 2020 , 10, 5347	4.9	2
304	Oxygen vacancy Engineered EMnOx/activated carbon for room-temperature catalytic oxidation of formaldehyde. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119294	21.8	27
303	Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. <i>Applied Surface Science</i> , 2020 , 513, 145775	6.7	15
302	Cytotoxicity of PM vehicular emissions in the Shing Mun Tunnel, Hong Kong. <i>Environmental Pollution</i> , 2020 , 263, 114386	9.3	13
301	Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. <i>EcoMat</i> , 2020 , 2, e12047	9.4	35
300	Facet Engineered EMnO for Efficient Catalytic Ozonation of Odor CHSH: Oxygen Vacancy-Induced Active Centers and Catalytic Mechanism. <i>Environmental Science & Environmental Sc</i>	3 ^{10.3}	51
299	In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	8

298	The mechanism of room temperature catalytic CH dissociation and oxygenation of formaldehyde over nano-zirconia phase-junction. <i>Chemical Engineering Journal</i> , 2020 , 380, 122498	14.7	6
297	TiO2/TaS2 with superior charge separation and adsorptive capacity to the photodegradation of gaseous acetaldehyde. <i>Chemical Engineering Journal</i> , 2020 , 379, 122395	14.7	20
296	Source identification of personal exposure to fine particulate matter (PM2.5) among adult residents of Hong Kong. <i>Atmospheric Environment</i> , 2019 , 218, 116999	5.3	9
295	Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. <i>Science of the Total Environment</i> , 2019 , 662, 470-480	10.2	27
294	Constructing Z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under VIS-NIR light. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15782-1579	3 3	43
293	The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong. <i>Chemosphere</i> , 2019 , 230, 578-586	8.4	8
292	In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions. <i>Environmental Science & Environmental Science & E</i>	10.3	9
291	Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4. <i>Applied Catalysis B: Environmental</i> , 2019 , 253, 293-299	21.8	51
290	Investigation of factors affecting the gaseous and particulate matter emissions from diesel vehicles. <i>Air Quality, Atmosphere and Health</i> , 2019 , 12, 1113-1126	5.6	5
289	Active Complexes on Engineered Crystal Facets of MnO-CeO and Scale-Up Demonstration on an Air Cleaner for Indoor Formaldehyde Removal. <i>Environmental Science & Environmental </i>	591·g	22
288	Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: Oxygen activation and efficient catalytic removal of formaldehyde at room temperature. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117981	21.8	31
287	New insights into the synergistic effect of active radicals and adsorptive ability on the photodegradation of gaseous acetaldehyde over reduced graphene Oxide/P25 composite. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120814	12.8	10
286	NOX-VOC-O3 Sensitivity in Urban Environments of Sri Lanka. <i>Asian Journal of Atmospheric Environment</i> , 2019 , 13, 62-72	1.3	2
285	Roles of N-Vacancies over Porous g-CN Microtubes during Photocatalytic NO Removal. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	119
284	Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 122-131	21.8	97
283	Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 187-195	21.8	105
282	Characteristics of atmospheric PM composition during the implementation of stringent pollution control measures in shanghai for the 2016 G20 summit. <i>Science of the Total Environment</i> , 2019 , 648, 112	1-9:12:	9 ²⁷
281	Seasonal behavior of water-soluble organic nitrogen in fine particulate matter (PM2.5) at urban coastal environments in Hong Kong. <i>Air Quality, Atmosphere and Health</i> , 2019 , 12, 389-399	5.6	4

280	Estimation of personal exposure to fine particles (PM) of ambient origin for healthy adults in Hong Kong. <i>Science of the Total Environment</i> , 2019 , 654, 514-524	10.2	23
279	Personal exposure to fine particles (PM) and respiratory inflammation of common residents in Hong Kong. <i>Environmental Research</i> , 2018 , 164, 24-31	7.9	40
278	Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 70-78	21.8	132
277	Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 1426-1440	4.4	38
276	Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core-Shell Heterojunctions. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 1479-14	1 87 .3	124
275	Abundance and origin of fine particulate chloride in continental China. <i>Science of the Total Environment</i> , 2018 , 624, 1041-1051	10.2	34
274	Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study. <i>Atmospheric Environment</i> , 2018 , 177, 64-74	5.3	35
273	Seasonal variations of C-C alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions. <i>Chemosphere</i> , 2018 , 194, 275-284	8.4	6
272	Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 357-367	21.8	143
271	Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NO removal under visible light: Improved charge separation and High selectivity. <i>Journal of Hazardous Materials</i> , 2018 , 354, 54-62	12.8	94
270	Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun Tunnel. <i>Aerosol Science and Technology</i> , 2018 , 52, 1085-1098	3.4	14
269	Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO2-supported MnOx©eO2. <i>Environmental Science: Nano</i> , 2018 , 5, 1130-1139	7.1	17
268	Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C 3 N 4 nanosheets. <i>Applied Surface Science</i> , 2018 , 430, 380-389	6.7	124
267	Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka. <i>Atmospheric Pollution Research</i> , 2018 , 9, 270-277	4.5	6
266	Synthesis of SrFexTi1-xO3-Ihanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 1-9	21.8	36
265	Visible-Light-Driven Nitrogen-Doped Carbon Quantum Dots/CaTiO3 Composite Catalyst with Enhanced NO Adsorption for NO Removal. <i>Industrial & Enhanced No Adsorption for No Removal. Industrial & Enhanced No Adsorption for No Adsorption f</i>	3.9	24
264	Visible light induced electron transfer from a semiconductor to an insulator enables efficient photocatalytic activity on insulator-based heterojunctions. <i>Nanoscale</i> , 2018 , 10, 15513-15520	7.7	33
263	Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 352-361	21.8	97

262	Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 187-195	21.8	113
261	Human cancer risk estimation for 1,3-butadiene: An assessment of personal exposure and different microenvironments. <i>Science of the Total Environment</i> , 2018 , 616-617, 1599-1611	10.2	12
260	In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 972-981	13	42
259	Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation. <i>Chemical Engineering Journal</i> , 2018 , 336, 200-210	14.7	65
258	Determinants of personal exposure to fine particulate matter (PM) in adult subjects in Hong Kong. <i>Science of the Total Environment</i> , 2018 , 628-629, 1165-1177	10.2	33
257	Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 938-946	21.8	110
256	Challenges on field monitoring of indoor air quality in china. <i>Indoor and Built Environment</i> , 2017 , 26, 576	- 5.8 4	7
255	Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. <i>Science of the Total Environment</i> , 2017 , 579, 212-220	10.2	18
254	Environment-Friendly Carbon Quantum Dots/ZnFeO Photocatalysts: Characterization, Biocompatibility, and Mechanisms for NO Removal. <i>Environmental Science & Environmental Scien</i>	10.3	194
253	Peroxymonosulfate activated by amorphous particulate MnO2 for mineralization of benzene gas: Redox reaction, weighting analysis, and numerical modelling. <i>Chemical Engineering Journal</i> , 2017 , 316, 61-69	14.7	10
252	Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. <i>Atmospheric Environment</i> , 2017 , 161, 1-12	5.3	79
251	Revisiting nitrous acid (HONO) emission from on-road vehicles: A tunnel study with a mixed fleet. Journal of the Air and Waste Management Association, 2017 , 67, 797-805	2.4	31
250	Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. <i>Chemosphere</i> , 2017 , 169, 660-668	8.4	33
249	Spatial distributions of airborne di-carbonyls in urban and rural areas in China. <i>Atmospheric Research</i> , 2017 , 186, 1-8	5.4	8
248	Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability. <i>RSC Advances</i> , 2017 , 7, 24683-24689	3.7	30
247	Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation. <i>Atmospheric Research</i> , 2017 , 196, 53-61	5.4	33
246	Salt-assisted Synthesis of Hollow Bi2WO6 Microspheres with Superior Photocatalytic Activity for NO Removal. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 348-356	11.3	37
245	Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. <i>Atmospheric Environment</i> , 2017 , 152, 51-60	5.3	40

244	Cancer risk from gaseous carbonyl compounds in indoor environment generated from household coal combustion in Xuanwei, China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 17500-1751	0 ^{5.1}	17
243	Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity. <i>Atmospheric Environment</i> , 2017 , 167, 223-234	5.3	14
242	Controllable Synthesis of CoreBhell Bi@Amorphous Bi2O3 Nanospheres with Tunable Optical and Photocatalytic Activity for NO Removal. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 1025	54-902	5 8 8
241	Source apportionment of VOCs and their impacts on surface ozone in an industry city of Baoji, Northwestern China. <i>Scientific Reports</i> , 2017 , 7, 9979	4.9	30
240	Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride. <i>Environmental Science & Environmental Science & </i>	1690 ³	146
239	Characterization and health risk assessment of PM-bound organics inside and outside of Chinese smoking lounges. <i>Chemosphere</i> , 2017 , 186, 438-445	8.4	11
238	Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism. <i>Journal of Catalysis</i> , 2017 , 352, 351-360	7.3	147
237	Three-Dimensional Bi(_{5})O(_{7})I Photocatalysts for Efficient Removal of NO in Air Under Visible Light. <i>Aerosol Science and Engineering</i> , 2017 , 1, 33-40	1.6	3
236	Cigarette induced PM2.5 in hotel rooms: An assessment of the effectiveness of management mitigating measures. <i>International Journal of Hospitality Management</i> , 2017 , 60, 42-47	8.3	6
235	Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 346-357	21.8	102
234	Observations of aerosol optical properties at a coastal site in Hong Kong, South China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2653-2671	6.8	13
233	Relationships between Outdoor and Personal Exposure of Carbonaceous Species and Polycyclic Aromatic Hydrocarbons (PAHs) in Fine Particulate Matter (PM2.5) at Hong Kong. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 666-679	4.6	15
232	Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China. <i>Atmospheric Environment</i> , 2016 , 124, 166-175	5.3	41
231	Physiochemical characteristics of indoor PM2.5 with combustion of dried yak dung as biofuel in Tibetan Plateau, China. <i>Indoor and Built Environment</i> , 2016 , 25, 737-747	1.8	8
230	. Industrial & Engineering Chemistry Research, 2016, 55, 10609-10617	3.9	24
229	In situ Fabrication of ⊞i2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity. <i>Scientific Reports</i> , 2016 , 6, 23435	4.9	51
228	Plasmonic Bi/ZnWO4 Microspheres with Improved Photocatalytic Activity on NO Removal under Visible Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6912-6920	8.3	74
227	Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9891-9903	6.8	103

226	Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 123-133	21.8	174
225	Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 4165-74	9.5	107
224	Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies. <i>Applied Catalysis A: General</i> , 2016 , 515, 170-178	5.1	50
223	Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. <i>Atmospheric Environment</i> , 2016 , 126, 162-170	5.3	53
222	Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. <i>Atmospheric Research</i> , 2016 , 167, 208-215	5.4	95
221	Risk Assessment of Indoor Formaldehyde and Other Carbonyls in Campus Environments in Northwestern China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1967-1980	4.6	16
220	Reconstructed Light Extinction Coefficients of Fine Particulate Matter in Rural Guangzhou, Southern China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1981-1990	4.6	13
219	Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode 2016 ,		2
218	Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 5763-5779	4	29
217	Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. <i>Molecules</i> , 2016 , 21, 56	4.8	168
216	Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning. <i>Environmental Pollution</i> , 2016 , 213, 524-532	9.3	38
215	Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. <i>Atmospheric Research</i> , 2016 , 170, 112-122	5.4	22
214	Real-time measurements of PM2.5, PM10\(\mathbb{Q}\).5, and BC in an urban street canyon. <i>Particuology</i> , 2015 , 20, 134-140	2.8	15
213	Controllable synthesis of phosphate-modified BiPO4 nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects. <i>RSC Advances</i> , 2015 , 5, 99712-99721	3.7	21
212	Comparison of ionic and carbonaceous compositions of PM2.5 in 2009 and 2012 in Shanghai, China. <i>Science of the Total Environment</i> , 2015 , 536, 695-703	10.2	43
211	Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies. <i>Atmospheric Environment</i> , 2015 , 122, 809-818	5.3	45
210	Exploratory study of the indoor and outdoor relationships and chemical compositions of particulate matter in urban households in Colombo. <i>Indoor and Built Environment</i> , 2015 , 24, 597-606	1.8	3
209	Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China. <i>Science of the Total Environment</i> , 2015 , 508, 477-87	10.2	125

(2013-2015)

208	Optical properties of size-resolved particles at a Hong Kong urban site during winter. <i>Atmospheric Research</i> , 2015 , 155, 1-12	5.4	19
207	PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. <i>Particuology</i> , 2015 , 18, 96-104	2.8	79
206	Management learning from air purifier tests in hotels: Experiment and action research. <i>International Journal of Hospitality Management</i> , 2015 , 44, 70-76	8.3	9
205	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids and benzoic acid in PM_{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3111-3123	6.8	52
204	Hyphenation of a EC / OC thermalØptical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 3337-3353	4	22
203	Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na0.5Bi0.5TiO3 nanotubes. <i>Journal of Alloys and Compounds</i> , 2014 , 613, 260-266	5.7	17
202	Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. <i>Environmental Science & Environmental Scienc</i>	10.3	355
201	Atmospheric peroxides in a polluted subtropical environment: seasonal variation, sources and sinks, and importance of heterogeneous processes. <i>Environmental Science & Environmental Science & Enviro</i>	50 ^{0.3}	44
200	Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong. <i>Atmospheric Environment</i> , 2014 , 89, 43-51	5.3	45
199	Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2014 , 66, 22577	3.3	52
198	On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. <i>Environmental Pollution</i> , 2014 , 195, 39-47	9.3	36
197	Kinetics of CH3S(-) reaction with in situ ferrate(VI) in aqueous alkaline solution. <i>Chemosphere</i> , 2013 , 92, 1301-6	8.4	3
196	Modeling BVOC isoprene emissions based on a GIS and remote sensing database. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2013 , 21, 66-77	7.3	4
195	Morphology-dependent photocatalytic removal of NO by hierarchical BiVO4 microboats and microspheres under visible light. <i>Applied Surface Science</i> , 2013 , 280, 354-359	6.7	38
194	Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong. <i>Atmospheric Research</i> , 2013 , 124, 61-72	5.4	67
193	Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on FelMn/TiO2 by DRIFT. <i>Chemical Engineering Journal</i> , 2013 , 225, 52-58	14.7	81
192	Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls. <i>Atmospheric Environment</i> , 2013 , 76, 200-207	5.3	44
191	Microscopic observation of metal-containing particles from Chinese continental outflow observed from a non-industrial site. <i>Environmental Science & Environmental Science & E</i>	10.3	39

190	Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 430	7 ⁶ 4318	3 ⁹²
189	Volatile Organic Compounds in Roadside Environment of Hong Kong. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 1331-1347	4.6	19
188	Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products. <i>Atmospheric Environment</i> , 2012 , 59, 224-231	5.3	25
187	Estimation of exhaust emission from ocean-going vessels in Hong Kong. <i>Science of the Total Environment</i> , 2012 , 431, 299-306	10.2	89
186	Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. <i>Journal of Hazardous Materials</i> , 2012 , 219-220, 26-34	12.8	296
185	Quantification of carbonate carbon in aerosol filter samples using a modified thermal/optical carbon analyzer (M-TOCA). <i>Analytical Methods</i> , 2012 , 4, 2578	3.2	3
184	Speed Profiles for Improvement of Maritime Emission Estimation. <i>Environmental Engineering Science</i> , 2012 , 29, 1076-1084	2	3
183	One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets. <i>CrystEngComm</i> , 2012 , 14, 3534	3.3	72
182	Characteristics of carbonaceous aerosol in PM2.5: Pearl Delta River Region, China. <i>Atmospheric Research</i> , 2012 , 104-105, 227-236	5.4	66
181	Seasonal and diurnal variations of mono- and di-carbonyls in Xi'an, China. <i>Atmospheric Research</i> , 2012 , 113, 102-112	5.4	42
180	Optimization of solid-phase microextraction (SPME) to determine airborne biogenic volatile organic compounds (BVOCs): An application for measurement of household cleaning products. <i>Analytical Methods</i> , 2012 , 4, 277-283	3.2	6
179	A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide. <i>Applied Surface Science</i> , 2012 , 263, 266-272	6.7	25
178	Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst. <i>Langmuir</i> , 2012 , 28, 766-73	4	201
177	Carbonyl emissions from vehicular exhausts sources in Hong Kong. <i>Journal of the Air and Waste Management Association</i> , 2012 , 62, 221-34	2.4	31
176	Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. <i>Journal of the Air and Waste Management Association</i> , 2012 , 62, 1214-26	2.4	290
175	Particle Counts and Size Distributions in the Roadside Environment. <i>Indoor and Built Environment</i> , 2012 , 21, 633-641	1.8	9
174	Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2725-2746	6.8	117
173	Characterization of Atmospheric Organic and Elemental Carbon of PM2.5 in a Typical Semi-Arid Area of Northeastern China. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 792-802	4.6	43

(2011-2012)

172	Measurement Study of Diurnal Variations of PM2.5 Mass Concentrations and Affecting Factors on Pollutant Dispersion in Urban Street Canyons under Weak-Wind Conditions in Xilln. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1261-1268	4.6	4
171	Real-Time Characterization of Particle-Bound Polycyclic Aromatic Hydrocarbons at a Heavily Trafficked Roadside Site. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1181-1188	4.6	10
170	Numerical Simulation of the Micro Environment in the Han Yang Mausoleum Museum. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 544-552	4.6	5
169	Size Differentiation of Individual Atmospheric Aerosol during Winter in Xi'an, China. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 951-960	4.6	9
168	Indoor/Outdoor Relationships for Organic and Elemental Carbon in PM2.5 at Residential Homes in Guangzhou, China. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 902-910	4.6	38
167	Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15171		825
166	Ultrasonic Spray Pyrolysis Fabrication of Solid and Hollow PbWO4 Spheres with Structure-Directed Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 241-247	3.8	42
165	Monoclinic Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 2044-2049	5.7	125
164	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM_{2.5} in Pearl Delta River Region, China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2197-2208	6.8	85
163	Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1787-94	12.8	26
162	Characteristics and source apportionment of PM1 emissions at a roadside station. <i>Journal of Hazardous Materials</i> , 2011 , 195, 82-91	12.8	45
161	Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. <i>Journal of Hazardous Materials</i> , 2011 , 195, 346-54	12.8	142
160	Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. <i>Atmospheric Environment</i> , 2011 , 45, 261-265	5.3	49
159	Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). <i>Atmospheric Environment</i> , 2011 , 45, 318-325	5.3	117
158	Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. <i>Atmospheric Environment</i> , 2011 , 45, 1359-1363	5.3	117
157	Characteristics of carbonate carbon in PM2.5 in a typical semi-arid area of Northeastern China. <i>Atmospheric Environment</i> , 2011 , 45, 1268-1274	5.3	14
156	Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon[large eddy simulations. <i>Atmospheric Environment</i> , 2011 , 45, 3352-3359	5.3	52
155	Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong. <i>Atmospheric Environment</i> , 2011 , 45, 6191-6196	5.3	19

154	Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. <i>Building and Environment</i> , 2011 , 46, 2657-2665	6.5	104
153	Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites. Journal of Physical Chemistry C, 2011 , 115, 25330-25337	3.8	185
152	Increasing trend of primary NO(2) exhaust emission fraction in Hong Kong. <i>Environmental Geochemistry and Health</i> , 2011 , 33, 623-30	4.7	25
151	NO treated TiO2 as an efficient visible light photocatalyst for NO removal. <i>Journal of Hazardous Materials</i> , 2011 , 192, 361-7	12.8	20
150	Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12428		133
149	Characterisation of Volatile Organic Compounds at Hotels in Southern China. <i>Indoor and Built Environment</i> , 2011 , 20, 420-429	1.8	18
148	Aerosol-assisted flow synthesis of WxTi1IO2 solid solution spheres with enhanced photocatalytic activity. <i>Applied Surface Science</i> , 2011 , 257, 4725-4730	6.7	4
147	Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. <i>Journal of Hazardous Materials</i> , 2011 , 186, 344-51	12.8	148
146	Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air. <i>Journal of Hazardous Materials</i> , 2011 , 187, 509-1	612.8	76
145	Winter and summer characteristics of airborne particles inside emperor Qin's Terra-Cotta Museum, China: a study by scanning electron microscopy-energy dispersive X-ray spectrometry. <i>Journal of the Air and Waste Management Association</i> , 2011 , 61, 914-22	2.4	3
144	Chemical Composition of Indoor and Outdoor Atmospheric Particles at Emperor Qin's Terra-cotta Museum, Xilln, China. <i>Aerosol and Air Quality Research</i> , 2011 , 11, 70-79	4.6	16
143	Characterizing the Gas-phase Organochlorine Pesticides in the Atmosphere over the Pearl River Delta Region. <i>Aerosol and Air Quality Research</i> , 2011 , 11, 237-246	4.6	8
142	Characteristics of Residential Indoor Carbonaceous Aerosols: A Case Study in Guangzhou, Pearl River Delta Region. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 472-478	4.6	21
141	Biogenic volatile organic compounds (BVOC) in ambient air over Hong Kong: analytical methodology and field measurement. <i>International Journal of Environmental Analytical Chemistry</i> , 2010 , 90, 988-999	1.8	5
140	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). <i>Journal of Geophysical Research</i> , 2010 , 115,		77
139	Efficient Visible Light Photocatalytic Oxidation of NO on Aerosol Flow-Synthesized Nanocrystalline InVO4 Hollow Microspheres. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18594-18600	3.8	74
138	DRIFT Study of the SO2 Effect on Low-Temperature SCR Reaction over FelMn/TiO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4961-4965	3.8	191
137	Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6342-6	349 ⁸	182

(2009-2010)

136	Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe3O4 Nanoroses. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6237-6242	3.8	132
135	On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM). <i>Environmental Science and Pollution Research</i> , 2010 , 17, 547-60	5.1	79
134	Positive sampling artifacts in particulate organic carbon measurements in roadside environment. <i>Environmental Monitoring and Assessment</i> , 2010 , 168, 645-56	3.1	5
133	Chemically-speciated on-road PM(2.5) motor vehicle emission factors in Hong Kong. <i>Science of the Total Environment</i> , 2010 , 408, 1621-7	10.2	105
132	Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification. <i>Journal of Hazardous Materials</i> , 2010 , 179, 141-50	12.8	63
131	Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process. <i>Ultrasonics Sonochemistry</i> , 2010 , 17, 370-5	8.9	55
130	Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China. <i>Science of the Total Environment</i> , 2009 , 407, 5319-27	10.2	26
129	Speciated mercury in size-fractionated particles in Shanghai ambient air. <i>Atmospheric Environment</i> , 2009 , 43, 3145-3154	5.3	73
128	Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. <i>Atmospheric Environment</i> , 2009 , 43, 6066-6073	5.3	87
127	Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. <i>Atmospheric Environment</i> , 2009 , 43, 6343-6351	5.3	115
126	Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. <i>Indoor Air</i> , 2009 , 19, 206-17	5.4	101
125	Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. <i>Journal of Hazardous Materials</i> , 2009 , 169, 77-87	12.8	150
124	Organic carbon and elemental carbon associated with PM(10) in Beijing during spring time. <i>Journal of Hazardous Materials</i> , 2009 , 172, 970-7	12.8	30
123	Aerosol-assisted flow synthesis of B-doped, Ni-doped and BNi-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 398-405	21.8	91
122	Interfacial Hydrothermal Synthesis of [email[protected]2O CoreBhell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20896-20902	3.8	196
121	Indoor air quality in new hotelsIguest rooms of the major world factory region. <i>International Journal of Hospitality Management</i> , 2009 , 28, 26-32	8.3	38
120	Atmospheric deterioration of Qin brick in an environmental chamber at Emperor Qin's Terracotta Museum, China. <i>Journal of Archaeological Science</i> , 2009 , 36, 2578-2583	2.9	10
119	Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. <i>Environmental Science & Environmental S</i>	10.3	396

118	Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion. Energy & Double 1, 2009, 23, 2523-2526	4.1	66
117	Elemental composition of airborne aerosols at a traffic site and a suburban site in Hong Kong. <i>International Journal of Environment and Pollution</i> , 2009 , 36, 166	0.7	9
116	Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7491-7504	6.8	113
115	Characterization of organic functional groups, water-soluble ionic species and carbonaceous compounds in PM10 from various emission sources in Songkhla Province, Thailand 2009 ,		3
114	Effect of Diesel/methanol compound combustion on Diesel engine combustion and emissions. Energy Conversion and Management, 2008 , 49, 1696-1704	10.6	149
113	Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine. <i>Science of the Total Environment</i> , 2008 , 389, 115-24	10.2	100
112	Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. <i>Langmuir</i> , 2008 , 24, 3510-6	4	269
111	Characteristics of Carbonaceous Aerosol at a NearHighway-Traffic Sampling Site During Spring 2006. <i>Environmental Forensics</i> , 2008 , 9, 283-289	1.6	
110	Particle and gas emissions from a simulated coal-burning household fire pit. <i>Environmental Science</i> & <i>amp; Technology</i> , 2008 , 42, 2503-8	10.3	34
109	Emissions Characteristics of a Diesel Engine Fueled with Biodiesel and Fumigation Methanol. <i>Energy & Diesel Fuels</i> , 2008 , 22, 906-914	4.1	40
108	Chemical characteristics of carbonaceous aerosols during dust storms over Xilin in China. <i>Advances in Atmospheric Sciences</i> , 2008 , 25, 847-855	2.9	9
107	Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol. <i>Fuel</i> , 2008 , 87, 1870-1879	7.1	216
106	Effect of rear slant angle on flow structures, and pollutant dispersion and concentration fields in the wake of the studied model vehicle. <i>International Journal of Heat and Mass Transfer</i> , 2008 , 51, 6180-6	5 19 3	10
105	Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. <i>Journal of Geophysical Research</i> , 2007 , 112,		114
104	Spatial and seasonal distributions of carbonaceous aerosols over China. <i>Journal of Geophysical Research</i> , 2007 , 112,		363
103	Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel. <i>Atmospheric Environment</i> , 2007 , 41, 1747-1758	5.3	51
102	Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China. <i>Atmospheric Environment</i> , 2007 , 41, 2851-2861	5.3	86
101	Photocatalytic activity and photo-induced hydrophilicity of mesoporous TiO2 thin films coated on aluminum substrate. <i>Applied Catalysis B: Environmental</i> , 2007 , 73, 135-143	21.8	36

(2006-2007)

100	Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. <i>Science of the Total Environment</i> , 2007 , 377, 52-60	10.2	73
99	Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. <i>Journal of Environmental Sciences</i> , 2007 , 19, 35-43	6.4	46
98	Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. <i>Journal of Environmental Sciences</i> , 2007 , 19, 564-71	6.4	63
97	Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, south China. <i>Journal of Environmental Sciences</i> , 2007 , 19, 939-47	6.4	96
96	Characteristics of carbonaceous aerosol at Taichung Harbor, Taiwan during summer and autumn period of 2005. <i>Environmental Monitoring and Assessment</i> , 2007 , 131, 501-8	3.1	3
95	Effects of Coherent Structures on Nanoparticle Coagulation and Dispersion in a Round Jet. <i>International Journal of Nonlinear Sciences and Numerical Simulation</i> , 2007 , 8,	1.8	26
94	Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers. <i>Applied Physics Letters</i> , 2007 , 91, 133110	3.4	86
93	Effects of Substrates on the Composition and Microstructure of TiO2 Thin Films Prepared by the LPD Method. <i>Key Engineering Materials</i> , 2007 , 280-283, 795-800	0.4	1
92	Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1402-9		41
91	Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006 , 179, 1171-1176	3.3	224
90	Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. <i>Atmospheric Environment</i> , 2006 , 40, 2128-2138	5.3	71
89	Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. <i>Atmospheric Environment</i> , 2006 , 40, 3030-3040	5.3	121
88	On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun Tunnel, Hong Kong. <i>Atmospheric Environment</i> , 2006 , 40, 4235-4245	5.3	45
87	Chemical composition of fine particles from incense burning in a large environmental chamber. <i>Atmospheric Environment</i> , 2006 , 40, 7858-7868	5:3	32
86	Exposure to PM2.5 and PAHs from the Tong Liang, China epidemiological study. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 517-42	2.3	39
85	Black carbon measurement in a coastal area of south China. <i>Journal of Geophysical Research</i> , 2006 , 111,		55
84	Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. <i>Environmental Science & Environmental Science & Envi</i>	10.3	256
83	Low molecular weight dicarboxylic acids, ketoacids, and dicarbonyls in the fine particles from a roadway tunnel: possible secondary production from the precursors. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 6255-60	10.3	38

82	High loadings and source strengths of organic aerosols in China. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	41
81	Seasonal and diurnal variations of PM1.0, PM2.5 and PM10 in the roadside environment of hong kong. <i>Particuology: Science and Technology of Particles</i> , 2006 , 4, 312-315		40
80	Morphology and elemental composition of dustfall particles inside emperor qin's terra-cotta warriors and horses museum. <i>Particuology: Science and Technology of Particles</i> , 2006 , 4, 346-351		5
79	Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. <i>Journal of Molecular Catalysis A</i> , 2006 , 246, 206-211		71
78	Fabrication, characterization and photocatalytic activity of preferentially oriented TiO2 films. <i>Journal of Crystal Growth</i> , 2006 , 295, 60-68	1.6	19
77	Source apportionment of PM2.5 in urban area of Hong Kong. <i>Journal of Hazardous Materials</i> , 2006 , 138, 73-85	12.8	76
76	Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. <i>Thin Solid Films</i> , 2006 , 496, 273-280	2.2	134
75	Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. <i>Chemical Communications</i> , 2006 , 1115-7	5.8	343
74	Characterization of Roadside Fine Particulate Carbon and its Eight Fractions in Hong Kong. <i>Aerosol and Air Quality Research</i> , 2006 , 6, 106-122	4.6	62
73	Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification. <i>Chemosphere</i> , 2005 , 59, 787-800	8.4	137
72	Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. <i>Journal of Geophysical Research</i> , 2005 , 110,		86
71	Low-temperature fabrication and photocatalytic activity of clustered TiO2 particles formed on glass fibers. <i>Journal of Crystal Growth</i> , 2005 , 280, 612-619	1.6	24
7º	Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. <i>Chemical Engineering Science</i> , 2005 , 60, 103-109	4.4	222
69	Indoor radon levels in selected hot spring hotels in Guangdong, China. <i>Science of the Total Environment</i> , 2005 , 339, 63-70	10.2	24
68	Composition of indoor aerosols at emperor qin's terra-cotta museum, xi'an, china, during summer, 2004. <i>Particuology: Science and Technology of Particles</i> , 2005 , 3, 170-175		21
67	EXPERIMENTAL STUDY ON EMISSION CHARACTERISTICS OF DIESEL ENGINES WITH DIESEL FUEL BLENDED WITH DIMETHYL CARBONATE. <i>Clean Air</i> , 2005 , 6, 239-253		5
66	Analysis of carbon isotopes in airborne carbonate and impli-cations for aeolian sources. <i>Science Bulletin</i> , 2004 , 49, 1637		
65	Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. Science of the Total Environment, 2004, 323, 87-98	10.2	41

(2003-2004)

64	Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. <i>Science of the Total Environment</i> , 2004 , 322, 155-66	10.2	178
63	Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO2. <i>Applied Catalysis B: Environmental</i> , 2004 , 49, 187-193	21.8	54
62	Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. <i>Applied Catalysis B: Environmental</i> , 2004 , 54, 41-50	21.8	170
61	Photocatalytic conversion of NO using TiO2NH3 catalysts in ambient air environment. <i>Applied Catalysis B: Environmental</i> , 2004 , 54, 275-283	21.8	35
60	Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment, 2004, 38, 963-9	75 03	98
59	Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. <i>Atmospheric Environment</i> , 2004 , 38, 941-951	5.3	105
58	Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. <i>Atmospheric Environment</i> , 2004 , 38, 4447-4456	5.3	332
57	Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong. <i>Atmospheric Environment</i> , 2004 , 38, 6327-6335	5.3	73
56	Analysis of carbon isotopes in airborne carbonate and implications for aeolian sources. <i>Science Bulletin</i> , 2004 , 49, 1637-1641		
55	Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 161, 131-140	4.7	133
54	Evaluation of emissions of total volatile organic compounds from carpets in an environmental chamber. <i>Building and Environment</i> , 2004 , 39, 179-187	6.5	21
53	Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. <i>Chemosphere</i> , 2004 , 57, 1363-72	8.4	76
52	Risk assessment of exposure to volatile organic compounds in different indoor environments. <i>Environmental Research</i> , 2004 , 94, 57-66	7.9	333
51	Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. <i>Environmental Research</i> , 2004 , 94, 47-56	7.9	131
50	Indoor air quality in ice skating rinks in Hong Kong. Environmental Research, 2004, 94, 327-35	7.9	25
49	Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. <i>Applied Catalysis B: Environmental</i> , 2003 , 42, 119-129	21.8	180
48	Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. <i>Applied Catalysis B: Environmental</i> , 2003 , 44, 191-205	21.8	195
47	Source characterization of BTEX in indoor microenvironments in Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 73-82	5.3	97

46	Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 31-39	5.3	286
45	Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. <i>Atmospheric Environment</i> , 2003 , 37, 1451-1460	5-3	494
44	Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 1023-1032	5.3	161
43	Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 5307-5317	5.3	463
42	The effect of wet film thickness on VOC emissions from a finishing varnish. <i>Science of the Total Environment</i> , 2003 , 302, 75-84	10.2	24
41	Substrate effects on VOC emissions from an interior finishing varnish. <i>Building and Environment</i> , 2003 , 38, 1019-1026	6.5	21
40	The development of low volatile organic compound emission housed case study. <i>Building and Environment</i> , 2003 , 38, 1413-1422	6.5	30
39	Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 156, 171-177	4.7	104
38	Spatial and seasonal distributions of atmospheric carbonaceous aerosols in pearl river delta region, china. <i>Particuology: Science and Technology of Particles</i> , 2003 , 1, 33-37		35
37	Waste reduction and recycling strategies for the in-flight services in the airline industry. <i>Resources, Conservation and Recycling,</i> 2003 , 37, 87-99	11.9	26
36	Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. <i>Chemosphere</i> , 2003 , 51, 1015-22	8.4	116
35	Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong. <i>Science of the Total Environment</i> , 2002 , 289, 145-58	10.2	66
34	Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. <i>Science of the Total Environment</i> , 2002 , 300, 59-67	10.2	61
33	Carbon monoxide levels measured in major commuting corridors covering different landuse and roadway microenvironments in Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 255-264	5.3	25
32	Investigation of indoor air quality at residential homes in Hong KongEase study. <i>Atmospheric Environment</i> , 2002 , 36, 225-237	5.3	184
31	Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. <i>Atmospheric Environment</i> , 2002 , 36, 57-65	5.3	145
30	Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 1259-1265	5.3	93
29	Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmospheric Environment, 2002 , 36, 2039-2047	5.3	92

(1999-2002)

28	Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 1929-1940	5.3	151
27	Commuter exposure to particulate matter in public transportation modes in Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 3363-3373	5.3	173
26	Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People's Republic of China. <i>Atmospheric Environment</i> , 2002 , 36, 5141-5148	5.3	133
25	Emissions of total volatile organic compounds from pressed wood products in an environmental chamber. <i>Building and Environment</i> , 2002 , 37, 1117-1126	6.5	23
24	Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. <i>Chemosphere</i> , 2002 , 48, 375-82	8.4	228
23	Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber. <i>Building and Environment</i> , 2001 , 36, 837-842	6.5	151
22	Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. <i>Science of the Total Environment</i> , 2001 , 279, 181-93	10.2	166
21	Spatial variation of mass concentration of roadside suspended particulate matter in metropolitan Hong Kong. <i>Atmospheric Environment</i> , 2001 , 35, 3167-3176	5-3	31
20	Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. <i>Atmospheric Environment</i> , 2001 , 35, 5949-5960	5.3	121
19	Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and Nanhai, Pearl River Delta. <i>Applied Geochemistry</i> , 2001 , 16, 1447-1454	3.5	35
18	Indoor air quality at nine shopping malls in Hong Kong. Science of the Total Environment, 2001, 273, 27-4	10 0.2	76
17	Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients. <i>Science Bulletin</i> , 2000 , 45, 76-79		1
16	Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere, 2000, 41, 109-13	8.4	200
15	Indoor air quality investigation on commercial aircraft. <i>Indoor Air</i> , 1999 , 9, 180-7	5.4	51
14	Indoor air quality investigations at five classrooms. <i>Indoor Air</i> , 1999 , 9, 134-8	5.4	69
13	Effect of postflame injection of fuel on the destruction of chlorinated hydrocarbons and the oxidation of NO. <i>Combustion and Flame</i> , 1999 , 119, 154-160	5.3	1
12	Indoor and outdoor air quality investigation at six residential buildings in Hong Kong. <i>Environment International</i> , 1999 , 25, 489-496	12.9	29
11	Indoor and outdoor air quality investigation at 14 public places in Hong Kong. <i>Environment International</i> , 1999 , 25, 443-450	12.9	42

10	Indoor/outdoor air quality correlation and questionnaire survey at two staff quarters in Hong Kong. <i>Environment International</i> , 1998 , 24, 729-737	12.9	10
9	Reports and Reviews: International Report: Comparison of Landfill Gases From Two Landfill Sites in China and Hong Kong. <i>Waste Management and Research</i> , 1997 , 15, 547-552	4	
8	Comparison of indoor and outdoor air quality at two staff quarters in Hong Kong. <i>Environment International</i> , 1997 , 23, 791-797	12.9	17
7	CO concentration inside the Cross Harbor Tunnel in Hong Kong. <i>Environment International</i> , 1996 , 22, 405-409	12.9	10
6	Enhanced destruction of CH3Cl in postflame combustion gases. <i>Combustion and Flame</i> , 1993 , 92, 106-11	1 4 .3	5
5	Air Quality Measurements on Sixteen Commercial Aircraft45-45-14		3
4	Questionnaire Survey to Evaluate the Health and Comfort of Cabin Crew259-259-10		3
3	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids and benzoic acid in PM _{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality		2
2	Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc		1
1	Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: a review. <i>Environmental Chemistry Letters</i> ,1	13.3	О