Odile Sergent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6935431/publications.pdf Version: 2024-02-01

ODILE SERCENT

#	Article	lF	CITATIONS
1	Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochemical Pharmacology, 1993, 45, 13-19.	4.4	554
2	Cisplatin-Induced CD95 Redistribution into Membrane Lipid Rafts of HT29 Human Colon Cancer Cells. Cancer Research, 2004, 64, 3593-3598.	0.9	293
3	Cisplatin-Induced Apoptosis Involves Membrane Fluidification via Inhibition of NHE1 in Human Colon Cancer Cells. Cancer Research, 2007, 67, 7865-7874.	0.9	145
4	Role for Membrane Fluidity in Ethanol-Induced Oxidative Stress of Primary Rat Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 104-111.	2.5	105
5	Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures. Free Radical Biology and Medicine, 1999, 26, 1457-1466.	2.9	84
6	Inter-laboratory Validation of Procedures for Measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radical Research, 2002, 36, 239-245.	3.3	75
7	Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures: Comparison of their mechanism of protection with that of desferrioxamine. Free Radical Biology and Medicine, 1992, 13, 499-508.	2.9	65
8	Role for membrane remodeling in cell death: Implication for health and disease. Toxicology, 2013, 304, 141-157.	4.2	65
9	The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Scientific Reports, 2016, 6, 30776.	3.3	54
10	Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells. European Journal of Cancer, 2010, 46, 1445-1455.	2.8	45
11	Ethanol induces oxidative stress in primary rat hepatocytes through the early involvement of lipid raft clustering. Hepatology, 2007, 47, 59-70.	7.3	44
12	Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis. Toxicology and Applied Pharmacology, 2010, 243, 68-76.	2.8	44
13	Membrane Fluidity Changes Are Associated with Benzo[a]Pyrene-Induced Apoptosis in F258 Cells: Protection by Exogenous Cholesterol. Annals of the New York Academy of Sciences, 2006, 1090, 108-112.	3.8	40
14	Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Scientific Reports, 2018, 8, 5963.	3.3	36
15	Physical Fitness and Plasma Non-Enzymatic Antioxidant Status at Rest and After a Wingate Test. Applied Physiology, Nutrition, and Metabolism, 2003, 28, 79-92.	1.7	35
16	Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluation of lipid peroxidation in rat hepatocyte cultures. Chemistry and Physics of Lipids, 1993, 65, 133-139.	3.2	32
17	Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-18.	4.0	32
18	Involvement of Phenoxyl Radical Intermediates in Lipid Antioxidant Action of Myricetin in Iron-Treated Rat Hepatocyte Culture. Biochemical Pharmacology, 1998, 55, 1399-1404.	4.4	31

Odile Sergent

#	Article	IF	CITATIONS
19	Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Seminars in Cancer Biology, 2017, 43, 49-65.	9.6	31
20	Ximelagatran increases membrane fluidity and changes membrane lipid composition in primary human hepatocytes. Toxicology in Vitro, 2009, 23, 1305-1310.	2.4	30
21	Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochemical Pharmacology, 2006, 72, 1343-1353.	4.4	28
22	Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release. Hepatology, 1998, 28, 1300-1308.	7.3	27
23	A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells. Toxicology and Applied Pharmacology, 2008, 228, 212-224.	2.8	27
24	Importance of Plasma Membrane Dynamics in Chemical-Induced Carcinogenesis. Recent Patents on Anti-Cancer Drug Discovery, 2011, 6, 347-353.	1.6	25
25	Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radical Biology and Medicine, 2014, 72, 11-22.	2.9	23
26	Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochemical Pharmacology, 2018, 158, 1-12.	4.4	21
27	Physical and chemical modulation of lipid rafts by a dietary n-3 polyunsaturated fatty acid increases ethanol-induced oxidative stress. Free Radical Biology and Medicine, 2011, 51, 2018-2030.	2.9	20
28	Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway. Chemico-Biological Interactions, 2014, 207, 41-51.	4.0	19
29	Polycyclic Aromatic Hydrocarbons Can Trigger Hepatocyte Release of Extracellular Vesicles by Various Mechanisms of Action Depending on Their Affinity for the Aryl Hydrocarbon Receptor. Toxicological Sciences, 2019, 171, 443-462.	3.1	18
30	Glutathione depletion increases nitric oxide-induced oxidative stress in primary rat hepatocyte cultures: involvement of low-molecular-weight iron. Free Radical Biology and Medicine, 2003, 34, 1283-1294.	2.9	16
31	Combination of Iron Overload Plus Ethanol and Ischemia Alone Give Rise to the Same Endogenous Free Iron Pool. BioMetals, 2005, 18, 567-575.	4.1	16
32	A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes. Food and Chemical Toxicology, 2013, 60, 286-296.	3.6	15
33	Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential. Toxicology in Vitro, 2015, 29, 1597-1608.	2.4	15
34	Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Scientific Reports, 2017, 7, 195.	3.3	15
35	PAHs increase the production of extracellular vesicles both inÂvitro in endothelial cells and inÂvivo in urines from rats. Environmental Pollution, 2019, 255, 113171.	7.5	15
36	Increased Lipiodol uptake in hepatocellular carcinoma possibly due to increased membrane fluidity by dexamethasone and tamoxifen. Nuclear Medicine and Biology, 2010, 37, 777-784.	0.6	14

Odile Sergent

#	Article	IF	CITATIONS
37	Extracellular vesicles released by polycyclic aromatic hydrocarbons-treated hepatocytes trigger oxidative stress in recipient hepatocytes by delivering iron. Free Radical Biology and Medicine, 2020, 160, 246-262.	2.9	14
38	NHE-1 Relocation Outside Cholesterol-rich Membrane Microdomains is Associated with its Benzo[a]pyrene-related Apoptotic Function. Cellular Physiology and Biochemistry, 2012, 29, 657-666.	1.6	13
39	Alkyl Galactofuranosides Strongly Interact with Leishmania donovani Membrane and Provide Antileishmanial Activity. Antimicrobial Agents and Chemotherapy, 2014, 58, 2156-2166.	3.2	13
40	Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. Journal of Applied Toxicology, 2017, 37, 732-746.	2.8	12
41	Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules, 2018, 8, 26.	4.0	12
42	Identification of the couple GSK3α/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis. Toxicology in Vitro, 2012, 26, 94-101.	2.4	11
43	On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry. Cell Biochemistry and Biophysics, 2012, 63, 47-57.	1.8	9
44	Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radical Biology and Medicine, 2018, 129, 323-337.	2.9	8
45	Protective Action of Ostreococcus Tauri and Phaeodactylum Tricornutum Extracts towards Benzo[a]Pyrene-Induced Cytotoxicity in Endothelial Cells. Marine Drugs, 2020, 18, 3.	4.6	8
46	Disturbances in H+ dynamics during environmental carcinogenesis. Biochimie, 2019, 163, 171-183.	2.6	7
47	Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biology and Toxicology, 2023, 39, 371-390.	5.3	7
48	[31] Ultraviolet and infrared methods for analysis of fatty acyl esters in cellular systems. Methods in Enzymology, 1994, 233, 310-313.	1.0	6
49	MEHP/ethanol co-exposure favors the death of steatotic hepatocytes, possibly through CYP4A and ADH involvement. Food and Chemical Toxicology, 2020, 146, 111798.	3.6	5
50	Up-to-Date Insight About Membrane Remodeling as a Mechanism of Action for Ethanol-Induced Liver Toxicity. , 0, , .		3
51	Acides gras polyinsaturés oméga 3Âet toxicité hépatique de l'éthanolÂ: rÃ1e du remodelage mem Nutrition Clinique Et Metabolisme, 2014, 28, 17-28.	branaire.	1
52	Effet des acides gras polyinsaturés à longue chaîne n-3Âsur le remodelage membranaire induit par les toxiques chimiquesÂ: retentissement sur la mort cellulaire. Cahiers De Nutrition Et De Dietetique, 2019, 54, 116-127.	0.3	0
53	Oxidative Stress Induced by \hat{I}^3 -interferon and Lipopolysaccharide in Rat Hepatocyte Cultures. Relationship with Nitric Oxide Production. , 1995, , 261-269.		0