Tobias Ingverud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6934628/publications.pdf

Version: 2024-02-01

1478505 1588992 8 217 6 8 citations h-index g-index papers 8 8 8 455 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dendritic Polyampholyte-Assisted Formation of Functional Cellulose Nanofibril Materials. Biomacromolecules, 2020, 21, 2856-2863.	5.4	4
2	Helux: A Heterofunctional Hyperbranched Poly(amido amine) Carboxylate. ACS Applied Polymer Materials, 2019, 1, 1845-1853.	4.4	4
3	Antibioticâ€Free Cationic Dendritic Hydrogels as Surgicalâ€6iteâ€Infectionâ€Inhibiting Coatings. Advanced Healthcare Materials, 2019, 8, e1801619.	7.6	18
4	Degradable high <i>T</i> _g sugar-derived polycarbonates from isosorbide and dihydroxyacetone. Polymer Chemistry, 2018, 9, 2238-2246.	3.9	24
5	On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 2018, 6, 19371-19380.	10.3	63
6	Flow-assisted assembly of nanostructured protein microfibers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1232-1237.	7.1	77
7	High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cellulose nanofibrils. Journal of Polymer Science Part A, 2016, 54, 3415-3424.	2.3	9
8	Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone. Cellulose, 2015, 22, 1063-1074.	4.9	18