Arunava Pradhan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6934364/arunava-pradhan-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

365 19 11 22 g-index h-index citations papers 22 7.7 3.51 439 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
22	Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams. <i>Global Change Biology</i> , 2022 , 28, 115-127	11.4	О
21	Can microplastics from personal care products affect stream microbial decomposers in the presence of silver nanoparticles?. <i>Science of the Total Environment</i> , 2022 , 832, 155038	10.2	1
20	Evidence of micro and macroplastic toxicity along a stream detrital food-chain <i>Journal of Hazardous Materials</i> , 2022 , 436, 129064	12.8	0
19	Individual and mixed effects of anticancer drugs on freshwater rotifers: A multigenerational approach. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 227, 112893	7	1
18	Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?. <i>Science of the Total Environment</i> , 2021 , 769, 144576	10.2	5
17	Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. <i>Environmental Pollution</i> , 2021 , 268, 115913	9.3	3
16	Importance of exposure route in determining nanosilver impacts on a stream detrital processing chain. <i>Environmental Pollution</i> , 2021 , 290, 118088	9.3	O
15	Proteomic responses to silver nanoparticles vary with the fungal ecotype. <i>Science of the Total Environment</i> , 2020 , 704, 135385	10.2	11
14	Effects of metal nanoparticles on freshwater rotifers may persist across generations. <i>Aquatic Toxicology</i> , 2020 , 229, 105652	5.1	6
13	Biochemical and functional responses of stream invertebrate shredders to post-wildfire contamination. <i>Environmental Pollution</i> , 2020 , 267, 115433	9.3	7
12	Reply to the "Letter to the editor, Proteomic responses to silver nanoparticles vary with the fungal ecotype" by Huang et al. <i>Science of the Total Environment</i> , 2020 , 748, 142402	10.2	
11	Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. <i>Environmental Science: Nano</i> , 2019 , 6, 1207-1218	7.1	23
10	Wildfire impacts on freshwater detrital food webs depend on runoff load, exposure time and burnt forest type. <i>Science of the Total Environment</i> , 2019 , 692, 691-700	10.2	22
9	Humic acid can mitigate the toxicity of small copper oxide nanoparticles to microbial decomposers and leaf decomposition in streams. <i>Freshwater Biology</i> , 2016 , 61, 2197-2210	3.1	24
8	Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. <i>Aquatic Toxicology</i> , 2016 , 180, 227-235	5.1	16
7	Natural organic matter alters size-dependent effects of nanoCuO on the feeding behaviour of freshwater invertebrate shredders. <i>Science of the Total Environment</i> , 2015 , 535, 94-101	10.2	13
6	Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 923-30	3.8	26

LIST OF PUBLICATIONS

5	Polyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 5874-81	4.8	12
4	Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams. <i>Science of the Total Environment</i> , 2014 , 466-467, 556-63	10.2	25
3	Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. <i>Chemosphere</i> , 2012 , 89, 1142-50	8.4	45
2	Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?. <i>Microbial Ecology</i> , 2011 , 62, 58-68	4.4	106
1	Phytoplankton Diversity as Indicator of Water Quality for Fish Cultivation. <i>American Journal of Environmental Sciences</i> , 2008 , 4, 406-411	0.5	19