Arunava Pradhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6934364/publications.pdf Version: 2024-02-01

		686830	713013
22	510	13	21
papers	citations	h-index	g-index
		_	
22	22	22	563
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Can Metal Nanoparticles Be a Threat to Microbial Decomposers of Plant Litter in Streams?. Microbial Ecology, 2011, 62, 58-68.	1.4	116
2	Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere, 2012, 89, 1142-1150.	4.2	49
3	Wildfire impacts on freshwater detrital food webs depend on runoff load, exposure time and burnt forest type. Science of the Total Environment, 2019, 692, 691-700.	3.9	38
4	Phytoplankton Diversity as Indicator of Water Quality for Fish Cultivation. American Journal of Environmental Sciences, 2008, 4, 406-411.	0.3	35
5	Fungi from metalâ€polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Environmental Toxicology and Chemistry, 2015, 34, 923-930.	2.2	31
6	Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams. Science of the Total Environment, 2014, 466-467, 556-563.	3.9	29
7	Humic acid can mitigate the toxicity of small copper oxide nanoparticles to microbial decomposers and leaf decomposition in streams. Freshwater Biology, 2016, 61, 2197-2210.	1.2	29
8	Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science: Nano, 2019, 6, 1207-1218.	2.2	29
9	Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. Aquatic Toxicology, 2016, 180, 227-235.	1.9	22
10	Proteomic responses to silver nanoparticles vary with the fungal ecotype. Science of the Total Environment, 2020, 704, 135385.	3.9	18
11	Biochemical and functional responses of stream invertebrate shredders to post-wildfire contamination. Environmental Pollution, 2020, 267, 115433.	3.7	18
12	Natural organic matter alters size-dependent effects of nanoCuO on the feeding behaviour of freshwater invertebrate shredders. Science of the Total Environment, 2015, 535, 94-101.	3.9	15
13	Effects of metal nanoparticles on freshwater rotifers may persist across generations. Aquatic Toxicology, 2020, 229, 105652.	1.9	14
14	Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environmental Pollution, 2021, 268, 115913.	3.7	13
15	Polyhydroxyfullerene Binds Cadmium Ions and Alleviates Metal-Induced Oxidative Stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80, 5874-5881.	1.4	12
16	Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?. Science of the Total Environment, 2021, 769, 144576.	3.9	9
17	Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams. Global Change Biology, 2022, 28, 115-127.	4.2	9
18	Evidence of micro and macroplastic toxicity along a stream detrital food-chain. Journal of Hazardous Materials, 2022, 436, 129064.	6.5	8

Arunava Pradhan

#	Article	IF	CITATIONS
19	Can microplastics from personal care products affect stream microbial decomposers in the presence of silver nanoparticles?. Science of the Total Environment, 2022, 832, 155038.	3.9	7
20	Individual and mixed effects of anticancer drugs on freshwater rotifers: A multigenerational approach. Ecotoxicology and Environmental Safety, 2021, 227, 112893.	2.9	6
21	Importance of exposure route in determining nanosilver impacts on a stream detrital processing chain. Environmental Pollution, 2021, 290, 118088.	3.7	3
22	Reply to the "Letter to the editor, Proteomic responses to silver nanoparticles vary with the fungal ecotype―by Huang et al Science of the Total Environment, 2020, 748, 142402.	3.9	0