
Treena Livingston Arinzeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6934003/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ALLOGENEIC MESENCHYMAL STEM CELLS REGENERATE BONE IN A CRITICAL-SIZED CANINE SEGMENTAL DEFECT. Journal of Bone and Joint Surgery - Series A, 2003, 85, 1927-1935.	3.0	434
2	A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials, 2005, 26, 3631-3638.	11.4	431
3	Piezoelectric materials for tissue regeneration: A review. Acta Biomaterialia, 2015, 24, 12-23.	8.3	404
4	Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017, 149, 51-62.	11.4	178
5	Biphasic Calcium Phosphate Ceramics for Bone Regeneration and Tissue Engineering Applications. Materials, 2010, 3, 815-826.	2.9	172
6	Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 2011, 7, 3877-3886.	8.3	171
7	Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials (Bristol), 2013, 8, 045007.	3.3	138
8	Electrospun Nanofibrous Materials for Neural Tissue Engineering. Polymers, 2011, 3, 413-426.	4.5	123
9	An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 762-771.	4.0	100
10	The Influence of Piezoelectric Scaffolds on Neural Differentiation of Human Neural Stem/Progenitor Cells. Tissue Engineering - Part A, 2012, 18, 2063-2072.	3.1	92
11	Mesenchymal Stem Cells for Bone Repair: Preclinical Studies and Potential Orthopedic Applications. Foot and Ankle Clinics, 2005, 10, 651-665.	1.3	86
12	The effect of PVDFâ€TrFE scaffolds on stem cell derived cardiovascular cells. Biotechnology and Bioengineering, 2016, 113, 1577-1585.	3.3	83
13	Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers. Journal of Biomedical Materials Research - Part A, 2014, 102, 674-684.	4.0	65
14	Microscale Versus Nanoscale Scaffold Architecture for Mesenchymal Stem Cell Chondrogenesis. Tissue Engineering - Part A, 2011, 17, 831-840.	3.1	61
15	Enhanced noradrenergic axon regeneration into schwann cellâ€filled PVDFâ€TrFE conduits after complete spinal cord transection. Biotechnology and Bioengineering, 2017, 114, 444-456.	3.3	58
16	The Biology of Bone and Ligament Healing. Foot and Ankle Clinics, 2016, 21, 739-761.	1.3	56
17	Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination <i>in vitro</i> . Journal of Neural Engineering, 2018, 15, 056010.	3.5	51
18	Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnology and Bioengineering, 2020, 117, 194-209.	3.3	49

#	Article	IF	CITATIONS
19	Investigating Breast Cancer Cell Behavior Using Tissue Engineering Scaffolds. PLoS ONE, 2015, 10, e0118724.	2.5	46
20	Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell and Tissue Research, 2015, 361, 477-495.	2.9	42
21	The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 2021, 10, e2001244.	7.6	42
22	Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. Journal of Orthopaedic Research, 2010, 28, 942-949.	2.3	41
23	Osteogenic differentiation of human mesenchymal stem cells on poly(ethylene glycol)â€variant biomaterials. Journal of Biomedical Materials Research - Part A, 2009, 91A, 975-984.	4.0	40
24	Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnology and Bioengineering, 2014, 111, 1000-1017.	3.3	34
25	Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e592-e603.	2.7	28
26	Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 2019, 90, 169-178.	8.3	24
27	Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Science Advances, 2021, 7, eabj1469.	10.3	18
28	Bioengineering Models for Breast Cancer Research. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29424.	1.1	17
29	Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Engineering - Part A, 2017, 23, 1011-1021.	3.1	17
30	Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 3117-3127.	4.0	15
31	Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS Journal, 2017, 19, 1017-1028.	4.4	13
32	Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis. Annals of Biomedical Engineering, 2020, 48, 2040-2052.	2.5	12
33	Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 173-185.	2.7	10
34	Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap. Journal of Visualized Experiments, 2017, , .	0.3	8
35	Learning Environments and Evidence-Based Practices in Bioengineering and Biomedical Engineering. Biomedical Engineering Education, 2022, 2, 1-16.	0.7	6
36	Growth Factor Delivery from Electrospun Materials. Journal of Biomaterials and Tissue Engineering, 2011, 1, 129-138.	0.1	5

#	Article	IF	CITATIONS
37	Structure and morphology of electrospun collagen blends. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 202-213.	0.9	4
38	Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis. Stem Cells and Development, 2016, 25, 1909-1918.	2.1	4
39	Fibrous scaffolds for bone tissue engineering. , 2020, , 351-382.		3
40	An evaluation of the osteoinductive properties of bioactive composites. , 2010, , .		2
41	Structural Support for Damaged Tissue Repair. American Scientist, 2017, 105, 298.	0.1	2
42	A novel, composite scaffold for bone repair. , 2009, , .		0
43	Use of GAG-like polysaccharides to engineer hydrogel-filled nanofibrous structures. , 2010, , .		0
44	In Vitro and In Vivo Evaluation of Composite Scaffolds for Bone Tissue Engineering. , 2015, , 1-22.		0
45	New Bone Grafting Technologies Using Stem Cells. , 0, , 287-298.		0