Moon Hee Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6933985/publications.pdf

Version: 2024-02-01

840776 839539 28 344 11 18 citations h-index g-index papers 28 28 28 401 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Asymmetric GaN/ZnO Engineered Resistive Memory Device for Electronic Synapses. ACS Applied Electronic Materials, 2022, 4, 297-307.	4.3	13
2	Resistive switching and conductance quantization in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-based resistive random access memory device with printable top electrodes. Thin Solid Films, 2022, 748, 139150.	1.8	3
3	Modulation of the electrical characteristics on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-based resistive random access memory device by the impact of top electrode materials. Thin Solid Films, 2022, 748, 139168.	1.8	1
4	Fully solution-processed organic RRAM device with highly stable butterfly-shaped hysteresis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115784.	3.5	9
5	Multistate Resistive Switching with Self-Rectifying Behavior and Synaptic Characteristics in a Solution-processed ZnO/PTAA Bilayer Memristor. Journal of the Electrochemical Society, 2022, 169, 063517.	2.9	7
6	Silver-nanowire-based lamination electrode for a fully vacuum-free and solution-processed organic photovoltaic cell. Organic Electronics, 2021, 89, 106046.	2.6	12
7	Coexistence of volatile and non-volatile resistive switching in Ni/SiO ₂ /Pt memristor device controlled from different current compliances. Semiconductor Science and Technology, 2021, 36, 095031.	2.0	8
8	Polymer-based non-volatile resistive random-access memory device fabrication with multi-level switching and negative differential resistance state. Organic Electronics, 2021, 96, 106228.	2.6	14
9	Fully vacuum-free large-area organic solar cell fabrication from polymer top electrode. Solid-State Electronics, 2021, 186, 108192.	1.4	7
10	Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features. Nanomaterials, 2020, 10, 2326.	4.1	26
11	Tailoring PEDOT:PSS polymer electrode for solution-processed inverted organic solar cells. Solid-State Electronics, 2020, 169, 107808.	1.4	20
12	Solution-Processed Semitransparent Inverted Organic Solar Cells from a Transparent Conductive Polymer Electrode. ECS Journal of Solid State Science and Technology, 2019, 8, Q32-Q37.	1.8	17
13	Fabrication of Spray-Coated Semitransparent Organic Solar Cells. IEEE Journal of the Electron Devices Society, 2019, 7, 1129-1132.	2.1	13
14	Effect of Laser-Induced Direct Micropatterning on Polymer Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47143-47152.	8.0	10
15	Fine control of optical scattering characteristics of porous polymer light-extraction layer for organic light-emitting diodes. Organic Electronics, 2019, 67, 79-88.	2.6	19
16	Optimization of a liquid refractive index sensor based on an integrated optic slot-waveguide directional coupler. Optik, 2019, 180, 984-990.	2.9	2
17	Enhanced light-outcoupling in organic light-emitting diodes through a coated scattering layer based on porous polymer films. Organic Electronics, 2017, 47, 117-125.	2.6	22
18	Pâ€181: Highly Efficient OLED Panels Based on Coated Porous Polymer Film as the Lightâ€Extraction Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1953-1956.	0.3	0

#	Article	IF	CITATIONS
19	Analysis of a commercial-scale photovoltaics system performance and economic feasibility. Journal of Renewable and Sustainable Energy, 2017, 9, .	2.0	7
20	Efficient ITO-free organic light-emitting diodes comprising PEDOT:PSS transparent electrodes optimized with 2-ethoxyethanol and post treatment. Organic Electronics, 2017, 42, 348-354.	2.6	29
21	Quantitative analysis of the levelized cost of electricity of commercial scale photovoltaics systems in the US. Solar Energy Materials and Solar Cells, 2016, 154, 71-77.	6.2	46
22	Investigation of Atomic Layer Deposition Al ₂ O ₃ Passivation for Screen-Printed Large-Area Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 869-874.	2.5	1
23	Development of a simple analytical model to quantify the PV module cost premium associated with module efficiency and cell technology. Renewable and Sustainable Energy Reviews, 2014, 37, 380-385.	16.4	9
24	Effect of carbon containing SiNx antireflection coating on the screen-printed contact and low illumination performance of silicon solar cell. Progress in Photovoltaics: Research and Applications, 2013, 21, 351-358.	8.1	2
25	Understanding and Development of Screen-Printed Front Metallization for High-Efficiency Low-to-Medium Concentrator Silicon Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 944-951.	2.5	5
26	Development and use of a simple numerical model to quantify the impact of key photovoltaics system parameters on the levelized cost of electricity., 2012 ,,.		2
27	Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Progress in Photovoltaics: Research and Applications, 2011, 19, 983-990.	8.1	38
28	Fully vacuumâ€free semitransparent polymer solar cells for powerâ€generating window with pure achromatic appealing. Energy Science and Engineering, 0, , .	4.0	2