
Guangbo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6933502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano, 2018, 12, 8739-8747.	7.3	206
2	Vertical 2D MoO ₂ /MoSe ₂ Core–Shell Nanosheet Arrays as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 8537-8544.	7.8	167
3	Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In ₂ Se ₃ . Chemistry of Materials, 2016, 28, 4278-4283.	3.2	146
4	Anisotropic Growth of Nonlayered CdS on MoS ₂ Monolayer for Functional Vertical Heterostructures. Advanced Functional Materials, 2016, 26, 2648-2654.	7.8	118
5	Vertically aligned two-dimensional SnS ₂ nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 1989-1995.	5.2	117
6	Mesocrystalline Ti3+TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis. Carbon, 2018, 128, 21-30.	5.4	110
7	Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Applied Catalysis B: Environmental, 2020, 260, 118134.	10.8	107
8	In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS ₂ –MoSe ₂ Lateral Heterostructures and Photodetector Application. ACS Applied Materials & Interfaces, 2017, 9, 1684-1691.	4.0	93
9	Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery. Journal of Power Sources, 2021, 486, 229351.	4.0	86
10	Recent advances in electrocatalysts for seawater splitting. Nano Materials Science, 2023, 5, 101-116.	3.9	86
11	Controlled growth of vertical 3D MoS _{2(1â^'x)} Se _{2x} nanosheets for an efficient and stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 18060-18066.	5.2	76
12	Efficiently Synergistic Hydrogen Evolution Realized by Trace Amount of Pt-Decorated Defect-Rich SnS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 37750-37759.	4.0	76
13	Kirigami-Inspired Highly Stretchable Nanoscale Devices Using Multidimensional Deformation of Monolayer MoS ₂ . Chemistry of Materials, 2018, 30, 6063-6070.	3.2	66
14	Tuning electrochemical catalytic activity of defective 2D terrace MoSe ₂ heterogeneous catalyst via cobalt doping. Journal of Materials Chemistry A, 2017, 5, 11357-11363.	5.2	61
15	Non-planar vertical photodetectors based on free standing two-dimensional SnS ₂ nanosheets. Nanoscale, 2017, 9, 9167-9174.	2.8	57
16	Solid-State Reaction Synthesis of a InSe/CuInSe ₂ Lateral p–n Heterojunction and Application in High Performance Optoelectronic Devices. Chemistry of Materials, 2015, 27, 983-989.	3.2	56
17	Hollow Spherical Nanoshell Arrays of 2D Layered Semiconductor for Highâ€Performance Photodetector Device. Advanced Functional Materials, 2018, 28, 1705153.	7.8	50
18	Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti). Chemical Engineering Research and Design, 2019, 143, 90-99.	2.7	49

Guangbo Liu

#	Article	IF	CITATIONS
19	MOF-derived dual metal (Fe, Ni) –nitrogen–doped carbon for synergistically enhanced oxygen reduction reaction. Applied Surface Science, 2021, 538, 148017.	3.1	46
20	Anderson-Type Polyoxometalate-Assisted Synthesis of Defect-Rich Doped 1T/2H-MoSe ₂ Nanosheets for Efficient Seawater Splitting and Mg/Seawater Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10246-10256.	4.0	45
21	Gate Modulation of Threshold Voltage Instability in Multilayer InSe Field Effect Transistors. ACS Applied Materials & Interfaces, 2015, 7, 26691-26695.	4.0	41
22	Patterned Growth of Pâ€Type MoS ₂ Atomic Layers Using Sol–Gel as Precursor. Advanced Functional Materials, 2016, 26, 6371-6379.	7.8	34
23	Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy, 2022, 98, 107295.	8.2	34
24	Temperature-dependent growth of few layer <i>î²</i> -InSe and <i>î±</i> -In ₂ Se ₃ single crystals for optoelectronic device. Semiconductor Science and Technology, 2018, 33, 125002.	1.0	29
25	Triggering the Intrinsic Catalytic Activity of Ni-Doped Molybdenum Oxides via Phase Engineering for Hydrogen Evolution and Application in Mg/Seawater Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 13106-13113.	3.2	29
26	High energy ball-milling preparation of Co–B amorphous alloy with high electrochemical hydrogen storage ability. Journal of Alloys and Compounds, 2012, 539, 90-96.	2.8	28
27	Amine-ligand modulated ruthenium nanoclusters as a superior bi-functional hydrogen electrocatalyst in alkaline media. Journal of Materials Chemistry A, 2021, 9, 22934-22942.	5.2	24
28	Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity. Materials Research Bulletin, 2018, 101, 246-252.	2.7	23
29	Mesocrystalline Ta2O5 nanosheets supported Pd Pt nanoparticles for efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 8232-8242.	3.8	22
30	Modulation of opto-electronic properties of InSe thin layers via phase transformation. RSC Advances, 2016, 6, 70452-70459.	1.7	17
31	Surface regulated Ni nanoparticles on N-doped mesoporous carbon as an efficient electrocatalyst for CO2 reduction. Chinese Journal of Catalysis, 2021, 42, 2306-2312.	6.9	15
32	Effects of Zn on the glass forming ability and mechanical properties of MgLi-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2012, 358, 8-13.	1.5	13
33	Effects of Zn addition on the glass forming ability and mechanical properties of Mg–Cu–Gd bulk metallic glasses. Journal of Alloys and Compounds, 2014, 588, 59-63.	2.8	13
34	Study on the formation of new Mg–Cu–Ti–Y quaternary bulk metallic glasses with high mechanical strength. Journal of Non-Crystalline Solids, 2012, 358, 3084-3088.	1.5	12
35	Vertical MoSe ₂ –MoO <i> _x </i> p–n heterojunction and its application in optoelectronics. Nanotechnology, 2018, 29, 045202.	1.3	11
36	New MgLi based Mg–Li–Cu–(Y, Gd) BMGs: Preparation, glass forming ability and mechanical properties. Journal of Non-Crystalline Solids, 2011, 357, 2182-2186.	1.5	9

Ultra-high strength Mg–Li based bulk metallic glasses: Preparation and performance research. 37 Materials Science & Engineering A: Structural Materials: Properties, Microstructure and 2.6 9 Processing, 2011, 528, 7156-7160.	#	Article	IF	CITATIONS
	37	Ultra-high strength Mg–Li based bulk metallic glasses: Preparation and performance research. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7156-7160.	2.6	9
38Self-powered electrolysis systems for sustainable hydrogen generation from natural seawater via a Ni/V2O3 Schottky electrode. Chemical Engineering Journal, 2022, 450, 138079.6.66	38	Self-powered electrolysis systems for sustainable hydrogen generation from natural seawater via a Ni/V2O3 Schottky electrode. Chemical Engineering Journal, 2022, 450, 138079.	6.6	6

Patterned Growth: Patterned Growth of P-Type MoS2Atomic Layers Using Sol-Gel as Precursor (Adv.) Tj ETQq1 1 0.784314 rgBT /Over