Hemchandra Chaulagain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6933193/publications.pdf

Version: 2024-02-01

23 papers 439 citations

933264 10 h-index 19 g-index

23 all docs 23 docs citations

times ranked

23

333 citing authors

#	Article	IF	CITATIONS
1	Structural performance and associated lessons to be learned from world earthquakes in Nepal after 25 April 2015 (MW 7.8) Gorkha earthquake. Engineering Failure Analysis, 2016, 68, 222-243.	1.8	87
2	Seismic risk assessment and hazard mapping in Nepal. Natural Hazards, 2015, 78, 583-602.	1.6	74
3	Seismic response of current RC buildings in Nepal: A comparative analysis of different design/construction. Engineering Structures, 2013, 49, 284-294.	2.6	42
4	Earthquake loss estimation for the Kathmandu Valley. Bulletin of Earthquake Engineering, 2016, 14, 59-88.	2.3	39
5	Seismic elastic performance of L-shaped building frames through plan irregularities. Structures, 2020, 27, 22-36.	1.7	38
6	Seismic response of current RC buildings in Kathmandu Valley. Structural Engineering and Mechanics, 2015, 53, 791-818.	1.0	29
7	Response reduction factor of irregular RC buildings in Kathmandu valley. Earthquake Engineering and Engineering Vibration, 2014, 13, 455-470.	1.1	26
8	Revisiting Major Historical Earthquakes in Nepal. , 2018, , 1-17.		19
9	Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal. Earthquake and Structures, 2015, 8, 511-539.	1.0	18
10	Seismic safety assessment of existing masonry infill structures in Nepal. Earthquake Engineering and Engineering Vibration, 2016, 15, 251-268.	1.1	17
11	Seismic vulnerability and retrofitting scheme for low-to-medium rise reinforced concrete buildings in Nepal. Journal of Building Engineering, 2019, 21, 186-199.	1.6	13
12	Design Procedures of Reinforced Concrete Framed Buildings in Nepal and its Impact on Seismic Safety. Advances in Structural Engineering, 2014, 17, 1419-1442.	1.2	10
13	Generation of spectrum-compatible acceleration time history for Nepal. Comptes Rendus - Geoscience, 2017, 349, 198-201.	0.4	9
14	Effect of variation on infill masonry walls in the seismic performance of soft story RC building. Australian Journal of Structural Engineering, 2019, 20, 1-9.	0.4	7
15	Comparison between the seismic codes of Nepal, India, Japan, and EU. Asian Journal of Civil Engineering, 2019, 20, 301-312.	0.8	3
16	Probabilistic seismic hazard analysis and construction of design spectra for Pokhara valley, Nepal. Asian Journal of Civil Engineering, 2020, 21, 1297-1308.	0.8	2
17	Seismic vulnerability assessment of reinforced concrete school building in Nepal. Asian Journal of Civil Engineering, 2021, 22, 249-262.	0.8	2
18	Study of Seismic Response Demands of Different L-shaped Buildings. Himalayan Journal of Applied Science and Engineering, 2020, 1, 23-29.	0.1	2

#	Article	IF	CITATIONS
19	Recent Advances on Analysis Methods and Modelling Approaches for Seismic Assessment and Design of Infilled RC Buildings. Advances in Civil Engineering, 2020, 2020, 1-1.	0.4	1
20	Impact of infill masonry type on seismic safety of RC frame structures in Nepal. Innovative Infrastructure Solutions, 2022, 7 , 1 .	1.1	1
21	Seismic Fragility Analysis of Institutional Building of Pokhara University. Himalayan Journal of Applied Science and Engineering, 2020, 1, 31-39.	0.1	O
22	Experimental characterization of Rat trap and traditional English bond used in masonry structures in Nepal. Journal of Building Pathology and Rehabilitation, 2022, 7, 1.	0.7	0
23	Study on overstrength and ductility of reinforced concrete building with different infill through nonlinear analysis. Structural Mechanics of Engineering Constructions and Buildings, 2021, 17, 366-378.	0.1	0