Yanshan Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6932654/publications.pdf Version: 2024-02-01

VANSHANLOU

#	Article	IF	CITATIONS
1	New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. International Journal of Solids and Structures, 2012, 49, 3605-3615.	1.3	415
2	Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. International Journal of Plasticity, 2014, 54, 56-80.	4.1	324
3	Asymmetric yield function based on the stress invariants for pressure sensitive metals. International Journal of Plasticity, 2014, 56, 184-202.	4.1	203
4	Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. Journal of Materials Processing Technology, 2013, 213, 1284-1302.	3.1	186
5	Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. International Journal of Solids and Structures, 2017, 112, 169-184.	1.3	179
6	Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. International Journal of Solids and Structures, 2013, 50, 447-455.	1.3	173
7	Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. International Journal of Plasticity, 2018, 101, 125-155.	4.1	137
8	Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. International Journal of Plasticity, 2017, 96, 1-35.	4.1	128
9	Anisotropic ductile fracture criterion based on linear transformation. International Journal of Plasticity, 2017, 93, 3-25.	4.1	100
10	Consideration of strength differential effect in sheet metals with symmetric yield functions. International Journal of Mechanical Sciences, 2013, 66, 214-223.	3.6	68
11	Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio. International Journal of Mechanical Sciences, 2018, 146-147, 583-601.	3.6	60
12	Strength modeling of sheet metals from shear to plane strain tension. International Journal of Plasticity, 2020, 134, 102813.	4.1	55
13	Application of the modified Mohr–Coulomb fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates impacted by blunt projectiles. International Journal of Impact Engineering, 2019, 123, 26-37.	2.4	54
14	Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods. International Journal of Impact Engineering, 2018, 120, 185-201.	2.4	53
15	Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter. Acta Mechanica Solida Sinica, 2013, 26, 642-658.	1.0	50
16	Effect of Lode angle in predicting the ballistic resistance of Weldox 700 E steel plates struck by blunt projectiles. International Journal of Impact Engineering, 2019, 128, 46-71.	2.4	36
17	Alternative approach to model ductile fracture by incorporating anisotropic yield function. International Journal of Solids and Structures, 2019, 164, 12-24.	1.3	36
18	Tensile fracture of ultrafine grained aluminum 6061 sheets by asymmetric cryorolling for microforming. International Journal of Damage Mechanics, 2014, 23, 1077-1095.	2.4	34

YANSHAN LOU

#	Article	IF	CITATIONS
19	Machine learning-based modeling of the coupling effect of strain rate and temperature on strain hardening for 5182-O aluminum alloy. Journal of Materials Processing Technology, 2022, 302, 117501.	3.1	24
20	User-friendly anisotropic hardening function with non-associated flow rule under the proportional loadings for BCC and FCC metals. Mechanics of Materials, 2022, 165, 104190.	1.7	23
21	A reduced Yld2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading. International Journal of Mechanical Sciences, 2019, 161-162, 105027.	3.6	22
22	Large strain flow curve identification for sheet metals under complex stress states. Mechanics of Materials, 2021, 161, 103997.	1.7	22
23	Anisotropic Behavior in Plasticity and Ductile Fracture of an Aluminum Alloy. Key Engineering Materials, 0, 651-653, 163-168.	0.4	18
24	A user-friendly anisotropic ductile fracture criterion for sheet metal under proportional loading. International Journal of Solids and Structures, 2021, 217-218, 48-59.	1.3	17
25	Modeling of temperature- and stress state-dependent yield and fracture behaviors for Mg-Gd-Y alloy. International Journal of Mechanical Sciences, 2022, 229, 107506.	3.6	16
26	Prediction of fracture forming limit for DP780 steel sheet. Metals and Materials International, 2013, 19, 697-705.	1.8	14
27	Fracture modelling of DP780 sheets using a hybrid experimental-numerical method and two-dimensional digital image correlation. International Journal of Materials and Product Technology, 2014, 48, 34.	0.1	10
28	Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function. AIP Conference Proceedings, 2010, , .	0.3	9
29	Prediction of ductile fracture for Al6016-T4 with a ductile fracture criterion: Experiment and simulation. International Journal of Damage Mechanics, 2020, 29, 1199-1221.	2.4	9
30	Accuracy Analysis of Anisotropic Yield Functions based on the Root-Mean Square Error. , 2010, , .		7
31	Effect of Anisotropic Yield Functions on the Accuracy of Material Flow and its Experimental Verification. Acta Mechanica Solida Sinica, 2019, 32, 50-68.	1.0	6
32	J2 - J3 based anisotropic yield function under spatial loading. Procedia Engineering, 2017, 207, 233-238.	1.2	5
33	Enhanced Constitutive Model for Aeronautic Aluminium Alloy (AA2024-T351) under High Strain Rates and Elevated Temperatures. International Journal of Automotive Technology, 2019, 20, 79-87.	0.7	5
34	Characterization of plasticity and fracture of an QP1180 steel sheet. Procedia Manufacturing, 2020, 50, 529-534.	1.9	5
35	Strain Rate Effect on the Fracture Behavior of the AA5754 Aluminum Alloy. Procedia Manufacturing, 2020, 47, 1264-1269.	1.9	5
36	Earing prediction of AA 2008-T4 with anisotropic Drucker yield function based on the second and third stress invariants. Journal of Physics: Conference Series, 2018, 1063, 012113.	0.3	4

YANSHAN LOU

#	Article	IF	CITATIONS
37	Characterization of kinematic and distortional hardening by cyclic twin-bridge shear tests for sheet metal with inverse engineering approach. Mechanics of Materials, 2022, 172, 104387.	1.7	4
38	Formability Prediction of Advanced High Strength Steel with a New Ductile Fracture Criterion. , 2011, , .		3
39	Finite Element formulation of a general asymmetrical yield function for pressure sensitive metals. Procedia Engineering, 2017, 207, 215-220.	1.2	3
40	Failure Modeling for QP980 Steel by a Shear Ductile Fracture Criterion. Metals, 2022, 12, 452.	1.0	3
41	Finite Element Modeling for Orthogonal Machining of AA2024-T351 Alloy With an Advanced Fracture Criterion. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	1.3	2
42	A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling. Mathematical Problems in Engineering, 2014, 2014, 1-9.	0.6	1
43	Linear transformation based orthotropic shear ductile fracture criterion for lightweight metals. AIP Conference Proceedings, 2017, , .	0.3	1
44	Extension of the DF2016 isotropic model into an anisotropic ductile fracture criterion. Journal of Physics: Conference Series, 2018, 1063, 012148.	0.3	1
45	Material characterization and fracture prediction with advanced constitutive model and Polar EPS fracture diagram for AA 3104-H19. Journal of Physics: Conference Series, 2018, 1063, 012156.	0.3	1
46	Prediction of Strain Path Changing Effect on Forming Limits of AA 6111-T4 Based on a Shear Ductile Fracture Criterion. Metals, 2021, 11, 546.	1.0	1
47	PREDICTION OF FORMING LIMIT DIAGRAMS OF DP590 STEEL BASED ON THE M-K MODEL WITH EXPERIMENTAL VERIFICATION. , 2011, , .		0
48	Rupture model based on non-associated plasticity. AIP Conference Proceedings, 2018, , .	0.3	0
49	Strain hardening under large deformation for AA5182. IOP Conference Series: Materials Science and Engineering, 2020, 967, 012030.	0.3	0
50	A pressure-coupled Drucker function for plasticity and fracture modelling of AA5182. IOP Conference Series: Materials Science and Engineering, 2020, 967, 012029.	0.3	0
51	Plastic and Fracture Characteristics of WE43 Mg Alloy Under Complex Stress States. Minerals, Metals and Materials Series, 2021, , 647-655.	0.3	0
52	Precise Modeling of Thermal and Strain Rate Effect on the Hardening Behavior of SiC/Al Composite. Materials, 2022, 15, 2000.	1.3	0
53	Simulations of plastic deformation by anisotropic hardening yield functions for QP1180. IOP Conference Series: Materials Science and Engineering, 2022, 1238, 012088.	0.3	0