Wei-Min He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6932291/publications.pdf

Version: 2024-02-01

44042 76872 5,734 75 48 74 citations h-index g-index papers 77 77 77 2209 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chemical Communications, 2019, 55, 5408-5419.	2.2	423
2	Ultrasound-promoted Brønsted acid ionic liquid-catalyzed hydrothiocyanation of activated alkynes under minimal solvent conditions. Green Chemistry, 2018, 20, 3683-3688.	4.6	203
3	Visible-light-induced deoxygenative C2-sulfonylation of quinoline <i>N</i> oxides with sulfinic acids. Green Chemistry, 2019, 21, 3858-3863.	4.6	175
4	A base-free, ultrasound accelerated one-pot synthesis of 2-sulfonylquinolines in water. Green Chemistry, 2017, 19, 5642-5646.	4.6	153
5	Visible-light-induced decarboxylative acylation of quinoxalin- $2(1 < i > H < /i >)$ -ones with $\hat{1}\pm$ -oxo carboxylic acids under metal-, strong oxidant- and external photocatalyst-free conditions. Green Chemistry, 2020, 22, 1720-1725.	4.6	145
6	Electrochemical multicomponent synthesis of 4-selanylpyrazoles under catalyst- and chemical-oxidant-free conditions. Green Chemistry, 2021, 23, 3950-3954.	4.6	140
7	Metal-free deoxygenative sulfonylation of quinoline <i>N</i> -oxides with sodium sulfinates <i>via</i> a dual radical coupling process. Organic Chemistry Frontiers, 2018, 5, 2604-2609.	2.3	135
8	Visible-Light-Initiated Decarboxylative Alkylation of Quinoxalin- $2(1 < i > H < /i >)$ -ones with Phenyliodine(III) Dicarboxylates in Recyclable Ruthenium(II) Catalytic System. ACS Sustainable Chemistry and Engineering, 2019, 7, 14153-14160.	3.2	130
9	Fast, Base-Free and Aqueous Synthesis of Quinolin-2($\langle i \rangle 1H \langle i \rangle$)-ones under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 10407-10412.	3.2	119
10	Selectfluor-mediated regioselective nucleophilic functionalization of N-heterocycles under metaland base-free conditions. Green Chemistry, 2018, 20, 760-764.	4.6	119
11	Natural Deep Eutectic Solvent-Catalyzed Selenocyanation of Activated Alkynes via an Intermolecular H-Bonding Activation Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 2169-2175.	3.2	116
12	The concept of dual roles design in clean organic preparation. Chinese Chemical Letters, 2019, 30, 2132-2138.	4.8	114
13	Metal-free C3-alkoxycarbonylation of quinoxalin-2(1H)-ones with carbazates as ecofriendly ester sources. Science China Chemistry, 2019, 62, 460-464.	4.2	110
14	Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chemistry, 2020, 22, 1388-1392.	4.6	109
15	Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. Chinese Journal of Catalysis, 2021, 42, 1921-1943.	6.9	109
16	Visible-light-promoted direct C–H/S–H cross-coupling of quinoxalin-2(1 <i>H</i>)-ones with thiols leading to 3-sulfenylated quinoxalin-2(1 <i>H</i>)-ones in air. Organic Chemistry Frontiers, 2019, 6, 3950-3955.	2.3	107
17	Water-controlled selective preparation of \hat{l} ±-mono or \hat{l} ±, \hat{l} ± \hat{a} € 2 -dihalo ketones via catalytic cascade reaction of unactivated alkynes with 1,3-dihalo-5,5-dimethylhydantoin. Green Chemistry, 2017, 19, 1983-1989.	4.6	105
18	Bis(methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O ₂ under metal- and base-free conditions. Green Chemistry, 2018, 20, 3038-3043.	4.6	105

#	Article	IF	CITATIONS
19	Selective oxidation of (hetero)sulfides with molecular oxygen under clean conditions. Green Chemistry, 2020, 22, 433-438.	4.6	102
20	Waste-Minimized Protocol for the Synthesis of Sulfonylated <i>N</i> -Heteroaromatics in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 16976-16981.	3.2	101
21	Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. Chinese Chemical Letters, 2021, 32, 1907-1910.	4.8	100
22	Metalâ€free Deoxygenative 2â€Amidation of Quinoline N â€oxides with Nitriles via a Radical Activation Pathway. Advanced Synthesis and Catalysis, 2018, 360, 4259-4264.	2.1	99
23	Aryl acyl peroxides for visible-light induced decarboxylative arylation of quinoxalin-2(1 <i>H</i>)-ones under additive-, metal catalyst-, and external photosensitizer-free and ambient conditions. Green Chemistry, 2021, 23, 374-378.	4.6	99
24	Visible-light-initiated malic acid-promoted cascade coupling/cyclization of aromatic amines and KSCN to 2-aminobenzothiazoles without photocatalyst. Chinese Chemical Letters, 2020, 31, 1895-1898.	4.8	98
25	Sustainable routes for quantitative green selenocyanation of activated alkynes. Chinese Chemical Letters, 2019, 30, 1237-1240.	4.8	96
26	Metal-free difunctionalization of alkynes leading to alkenyl dithiocyanates and alkenyl diselenocyanates at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 9064-9068.	1.5	92
27	Br $ ilde{A}_i$ nsted Acidic Ionic Liquid-Promoted Amidation of Quinoline <i>N</i> -Oxides with Nitriles. ACS Sustainable Chemistry and Engineering, 2018, 6, 7989-7994.	3.2	88
28	C(sp2)–H/O–H cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with alcohols under visible-light photoredox catalysis. Chinese Journal of Catalysis, 2020, 41, 1168-1173.	6.9	87
29	Metal- and Solvent-Free Ultrasonic Multicomponent Synthesis of $(\langle i\rangle Z\langle i\rangle)$ - \hat{l}^2 -lodo Vinylthiocyanates. ACS Sustainable Chemistry and Engineering, 2019, 7, 1574-1579.	3.2	86
30	Synergistic cooperative effect of CF ₃ SO ₂ Na and bis(2-butoxyethyl)ether towards selective oxygenation of sulfides with molecular oxygen under visible-light irradiation. Green Chemistry, 2021, 23, 496-500.	4.6	86
31	Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. Chinese Journal of Catalysis, 2021, 42, 1445-1450.	6.9	86
32	AgBF $<$ sub $>$ 4 $<$ /sub $>$ -catalyzed deoxygenative C2-amination of quinoline $<$ i $>$ N $<$ /i $>$ -oxides with isothiocyanates. Organic Chemistry Frontiers, 2019, 6, 167-171.	2.3	84
33	Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. Chinese Chemical Letters, 2022, 33, 1798-1816.	4.8	84
34	Recent developments in the difunctionalization of alkenes with C–N bond formation. Organic Chemistry Frontiers, 2021, 8, 5206-5228.	2.3	83
35	TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water. Chinese Chemical Letters, 2019, 30, 2287-2290.	4.8	78
36	Clean Preparation of Quinolin-2-yl Substituted Ureas in Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 7193-7199.	3.2	75

#	Article	IF	CITATIONS
37	Nitriles as radical acceptors in radical cascade reactions. Organic Chemistry Frontiers, 2021, 8, 445-465.	2.3	71
38	The clean preparation of multisubstituted pyrroles under metal- and solvent-free conditions. Green Chemistry, 2020, 22, 118-122.	4.6	68
39	Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. Chinese Chemical Letters, 2021, 32, 475-479.	4.8	66
40	Green and Efficient: Oxidation of Aldehydes to Carboxylic Acids and Acid Anhydrides with Air. ACS Sustainable Chemistry and Engineering, 2018, 6, 4916-4921.	3.2	65
41	Visible-Light-Initiated Cross-Dehydrogenative Coupling of Quinoxalin-2(1 <i>H</i>)-ones and Simple Amides with Air as an Oxidant. ACS Sustainable Chemistry and Engineering, 2019, 7, 19993-19999.	3.2	64
42	Iodine-Catalyzed Odorless Synthesis of <i>S</i> -Thiocarbamates with Sulfonyl Chlorides as a Sulfur Source. Journal of Organic Chemistry, 2019, 84, 6065-6071.	1.7	62
43	Electrochemical regioselective synthesis of N-substituted/unsubstituted 4-selanylisoquinolin-1(2H)-ones. Chinese Chemical Letters, 2022, 33, 1501-1504.	4.8	61
44	Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30, 2259-2262.	4.8	56
45	Molecular iodine-mediated synthesis of thiocarbamates from thiols, isocyanides and water under metal-free conditions. Organic and Biomolecular Chemistry, 2018, 16, 8403-8407.	1.5	55
46	Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. Green Synthesis and Catalysis, 2021, 2, 233-236.	3.7	55
47	Direct synthesis of alkenyl iodides <i>via</i> indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI. Organic and Biomolecular Chemistry, 2018, 16, 3177-3180.	1.5	53
48	Electrosynthesis of 1-indanones. Chinese Chemical Letters, 2021, 32, 1591-1592.	4.8	53
49	The application of clean production in organic synthesis. Chinese Chemical Letters, 2021, 32, 1637-1644.	4.8	51
50	Metalâ€Free C3 Hydroxylation of Quinoxalinâ€2(1 H)â€ones in Water. Advanced Synthesis and Catalysis, 2019, 361, 5721-5726.	2.1	50
51	Clean Oxidation of (Hetero)benzylic C _{sp3} â€"H Bonds with Molecular Oxygen. ACS Sustainable Chemistry and Engineering, 2019, 7, 10293-10298.	3.2	49
52	Four-component synthesis of 3-aminomethylated imidazoheterocycles in EtOH under catalyst-free, oxidant-free and mild conditions. Green Chemistry, 2021, 23, 4430-4434.	4.6	48
53	Palladium-catalyzed selective synthesis of 3,4-dihydroquinazolines from electron-rich arylamines, electron-poor arylamines and glyoxalates. Organic and Biomolecular Chemistry, 2018, 16, 5050-5054.	1.5	47
54	Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions. Chinese Chemical Letters, 2019, 30, 2304-2308.	4.8	43

#	Article	IF	CITATIONS
55	Recent advances in transition-metal-free trifluoromethylation with Togni's reagents. Organic Chemistry Frontiers, 2022, 9, 1152-1164.	2.3	43
56	Visibleâ€Light Photosynthesis of CHF ₂ /CClF ₂ /CBrF ₂ â€Substituted Ringâ€fused Quinazolinones in Dimethyl Carbonate. Chemistry - an Asian Journal, 2022, 17, .	1.7	42
57	Practical Approach for Clean Preparation of Z- \hat{l}^2 -Thiocyanate Alkenyl Esters. ACS Sustainable Chemistry and Engineering, 2019, 7, 8798-8803.	3.2	41
58	Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N,N-disubstituted formamides. Chinese Chemical Letters, 2020, 31, 3241-3244.	4.8	37
59	Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Organic Letters, 2020, 22, 2206-2209.	2.4	37
60	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
61	Gold-catalyzed oxazoles synthesis and their relevant antiproliferative activities. Chinese Chemical Letters, 2013, 24, 1064-1066.	4.8	28
62	Microwave-assisted 6Ï€-electrocyclization in water. Chinese Chemical Letters, 2020, 31, 2999-3000.	4.8	26
63	Radical Cyclization Strategy towards Indolo[1,2-a]quinolines. Chinese Journal of Organic Chemistry, 2019, 39, 3594.	0.6	24
64	Alcohols controlled selective radical cyclization of $1,6$ -dienes under mild conditions. Chinese Chemical Letters, 2020, 31, 3267-3270.	4.8	23
65	1,2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions. Chinese Chemical Letters, 2020, 31, 1868-1872.	4.8	22
66	Synthesis of hydroxyl-containing oxindoles and 3,4-dihydroquinolin-2-ones through oxone-mediated cascade arylhydroxylation of activated alkenes. Green Chemistry, 2020, 22, 8369-8374.	4.6	21
67	Molecular iodine-catalyzed multicomponent synthesis of \hat{l} ±-cyanopyrrolines with ambient air as the oxidant under neat conditions. Organic Chemistry Frontiers, 2020, 7, 4026-4030.	2.3	18
68	Palladium-Catalyzed Reductive Coupling of Nitroarenes with PhenolsÂ-leading to N-Cyclohexylanilines. Synthesis, 2018, 50, 4637-4644.	1.2	16
69	Uranyl photocatalysis: precisely controlled oxidation of sulfides with ground-state oxygen. Science China Chemistry, 2020, 63, 291-293.	4.2	13
70	Copper(<scp>i</scp>)-catalyzed intermolecular cyanoarylation of alkenes: convenient access to î±-alkylated arylacetonitriles. Organic and Biomolecular Chemistry, 2020, 18, 5234-5237.	1.5	11
71	Visibleâ€Lightâ€Initiated Cascade Reaction of 2â€Isothiocyanatonaphthalenes and Amines under Additive―and External Photocatalystâ€Free and Mild Conditions. Advanced Synthesis and Catalysis, 2021, 363, 757-761.	2.1	11
72	Green synthesis of 4-organylselanyl-1H-pyrazoles through electrochemical cross-dehydrogenative coupling of 1H-pyrazoles and diorganyl diselenides. Tetrahedron Letters, 2021, 77, 153257.	0.7	9

Wei-Min He

#	Article	lF	CITATIONS
73	Editorial: Green organic synthesis. Chinese Chemical Letters, 2021, 32, 1589-1590.	4.8	8
74	Chromium-Catalyzed Asymmetric Dearomatization–Addition Reactions of Halomethyloxazoles and Indoles. Synthesis, 2018, 50, 4915-4921.	1.2	6
75	Metal-free synthesis of 1,2,3-benzotriazines. Chinese Chemical Letters, 2020, 31, 2989-2990.	4.8	4