Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6931650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Particle hygroscopicity inhomogeneity and its impact on reactive uptake. Science of the Total Environment, 2022, 811, 151364.	8.0	8
2	Characterisation of the Manchester Aerosol Chamber facility. Atmospheric Measurement Techniques, 2022, 15, 539-559.	3.1	14
3	On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmospheric Chemistry and Physics, 2022, 22, 4149-4166.	4.9	4
4	Ammonium Chloride Associated Aerosol Liquid Water Enhances Haze in Delhi, India. Environmental Science & Technology, 2022, 56, 7163-7173.	10.0	21
5	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	3.2	42
6	Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon. Faraday Discussions, 2021, 226, 239-254.	3.2	5
7	Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091351.	4.0	24
8	Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors. Atmospheric Chemistry and Physics, 2021, 21, 11303-11316.	4.9	7
9	Identification of Aerosol Pollution Hotspots in Jiangsu Province of China. Remote Sensing, 2021, 13, 2842.	4.0	11
10	Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273.	4.9	20
11	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nature Geoscience, 2021, 14, 77-84.	12.9	94
12	Local characteristics of and exposure to fine particulate matter (PM2.5) in four indian megacities. Atmospheric Environment: X, 2020, 5, 100052.	1.4	47
13	Acidity and inorganic ion formation in PM2.5 based on continuous online observations in a South China megacity. Atmospheric Pollution Research, 2020, 11, 1339-1350.	3.8	13
14	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	4.9	74
15	Mitigation of PM _{2.5} and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period. Atmospheric Chemistry and Physics, 2020, 20, 499-514.	4.9	52
16	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	4.9	14
17	Significant Climate Impact of Highly Hygroscopic Atmospheric Aerosols in Delhi, India. Geophysical Research Letters, 2019, 46, 5535-5545.	4.0	33
18	Photochemical reaction playing a key role in particulate matter pollution over Central France: Insight from the aerosol optical properties. Science of the Total Environment, 2019, 657, 1074-1084.	8.0	9

Yu Wang

#	Article	IF	CITATIONS
19	Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain. Environmental Science and Technology Letters, 2018, 5, 160-166.	8.7	165
20	Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing. Atmospheric Environment, 2018, 175, 184-191.	4.1	36
21	New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Science of the Total Environment, 2018, 621, 734-743.	8.0	78
22	The influence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements. Atmospheric Environment, 2018, 195, 141-148.	4.1	23
23	Interactions between water vapor and atmospheric aerosols have key roles in air quality and climate change. National Science Review, 2018, 5, 452-454.	9.5	33
24	Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China. Science of the Total Environment, 2017, 579, 1260-1268.	8.0	24
25	Submicrometer Particles Are in the Liquid State during Heavy Haze Episodes in the Urban Atmosphere of Beijing, China. Environmental Science and Technology Letters, 2017, 4, 427-432.	8.7	139
26	Characterization and Influence Factors of PM _{2.5} Emitted from Crop Straw Burning. Acta Chimica Sinica, 2016, 74, 356.	1.4	15