Grazyna Kowalewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6931649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS). Marine Pollution Bulletin, 2004, 49, 229-234.	2.3	97
2	Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment. Analytica Chimica Acta, 2005, 547, 243-254.	2.6	94
3	Polychlorinated biphenyls (PCBs) in sediments of the southern Baltic Sea — trends and fate. Science of the Total Environment, 2001, 280, 1-15.	3.9	71
4	Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Science of the Total Environment, 2014, 473-474, 298-307.	3.9	51
5	Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environmental Science and Pollution Research, 2014, 21, 2077-2087.	2.7	50
6	A widespread chlorophyll transformation pathway in the aquatic environment. Organic Geochemistry, 1992, 19, 217-227.	0.9	48
7	Phytoplankton?the main factor responsible for transport of polynuclear aromatic hydrocarbons from water to sediments in the Southern Baltic ecosystem (Extended abstract). ICES Journal of Marine Science, 1999, 56, 219-222.	1.2	43
8	Chlorophyll-a and derivatives in recent sediments as indicators of productivity and depositional conditions. Marine Chemistry, 2011, 125, 39-48.	0.9	42
9	Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Marine Pollution Bulletin, 2007, 55, 512-528.	2.3	39
10	Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5
11	Distribution and fate of polycyclic aromatic hydrocarbons (PAHs) in recent sediments from the Gulf of GdaÅ,,sk (SE Baltic). Oceanologia, 2010, 52, 669-703.	1.1	34
12	The influence of microorganisms on chlorophyll a degradation in the marine environment. Limnology and Oceanography, 2008, 53, 851-862.	1.6	32
13	The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). Marine Pollution Bulletin, 2012, 64, 614-626.	2.3	31
14	Chlorophyll a and its derivatives in sediments of the Odra estuary as a measure of its eutrophication. Marine Pollution Bulletin, 2004, 49, 148-153.	2.3	30
15	Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quaternary International, 2005, 130, 141-151.	0.7	30
16	Transfer of organic contaminants to the Baltic in the Odra Estuary. Marine Pollution Bulletin, 2003, 46, 703-718.	2.3	29
17	Organotins in fish muscle and liver from the Polish coast of the Baltic Sea: Is the total ban successful?. Marine Pollution Bulletin, 2016, 111, 493-499.	2.3	29

¹⁸Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea). Oceanologia, 2009, 51,
233-262.1.125

#	Article	IF	CITATIONS
19	Tracking trends in eutrophication based on pigments in recent coastal sediments. Oceanologia, 2017, 59, 1-17.	1.1	24
20	Butyltins in sediments from the Southern Baltic coastal zone: Is it still a matter of concern, 10 years after implementation of the total ban?. Marine Pollution Bulletin, 2019, 146, 343-348.	2.3	23
21	Indices of PAH Origin—A Case Study of the Gulf of Gdańsk (SE Baltic) Sediments. Polycyclic Aromatic Compounds, 2012, 32, 335-363.	1.4	20
22	Algal pigments in Baltic sediments as markers of ecosystem and climate changes. Climate Research, 2001, 18, 89-96.	0.4	17
23	Plastic-derived contaminants in sediments from the coastal zone of the southern Baltic Sea. Marine Pollution Bulletin, 2019, 146, 255-262.	2.3	16
24	Products of ChlorophyllÂa Transformation by Selected Benthic Organisms in the Odra Estuary (Southern Baltic Sea). Hydrobiologia, 2006, 554, 155-164.	1.0	15
25	Chloropigments a in sediments of the Gulf of GdaÅ,,sk deposited during the last 4000years as indicators of eutrophication and climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 283-294.	1.0	14
26	Comparison of Extraction and HPLC Methods for Marine Sedimentary Chloropigment Determinations. Journal of Liquid Chromatography and Related Technologies, 2008, 31, 1162-1180.	0.5	13
27	Climate change impact on primary production and phytoplankton taxonomy in Western Spitsbergen fjords based on pigments in sediments. Global and Planetary Change, 2020, 189, 103158.	1.6	12
28	Algal pigments in Hornsund (Svalbard) sediments as biomarkers of Arctic productivity and environmental conditions. Polish Polar Research, 2017, 38, 423-443.	0.9	11
29	Anthropogenic impact on marine ecosystem health: A comparative multi-proxy investigation of recent sediments in coastal waters. Marine Pollution Bulletin, 2018, 133, 328-335.	2.3	11
30	Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea. Marine Drugs, 2018, 16, 116.	2.2	11
31	Canthaxanthin in recent sediments as an indicator of heterocystous cyanobacteria in coastal waters. Oceanologia, 2019, 61, 78-88.	1.1	11
32	Present and Pastâ€Millennial Eutrophication in the Gulf of GdaÅ"sk (Southern Baltic Sea). Paleoceanography and Paleoclimatology, 2019, 34, 136-152.	1.3	10
33	Carotenoid determination in recent marine sediments - practical problems during sample preparation and HPLC analysis. Current Chemistry Letters, 2017, , 91-104.	0.5	7
34	Steryl chlorin esters in sediments of the southern Baltic Sea. Netherlands Journal of Aquatic Ecology, 1994, 28, 149-156.	0.3	5
35	Eutrophication monitoring system near the Sopot beach (southern Baltic). Ocean and Coastal Management, 2014, 98, 51-61.	2.0	5
36	Chemical Analysis of Contaminants in Sediments. Sustainable Management of Sediment Resources, 2007. 1. 61-129.	0.5	3