List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6931602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal Dehydration for the "Green―Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009, 21, 2950-2956.	3.2	1,430
2	Photocatalytic Conversion of CO ₂ into Renewable Hydrocarbon Fuels: Stateâ€ofâ€theâ€Art Accomplishment, Challenges, and Prospects. Advanced Materials, 2014, 26, 4607-4626.	11.1	1,319
3	Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie - International Edition, 2004, 43, 4988-4992.	7.2	1,127
4	Stateâ€ofâ€theâ€Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 998-1013.	7.8	706
5	High-Yield Synthesis of Ultralong and Ultrathin Zn ₂ GeO ₄ Nanoribbons toward Improved Photocatalytic Reduction of CO ₂ into Renewable Hydrocarbon Fuel. Journal of the American Chemical Society, 2010, 132, 14385-14387.	6.6	606
6	Z‣cheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Advanced Science, 2016, 3, 1500389.	5.6	600
7	Synthesis of Very Small TiO2Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. Journal of the American Chemical Society, 2003, 125, 14960-14961.	6.6	572
8	Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Solâ^'Gel Nanocasting Technique. Nano Letters, 2004, 4, 477-481.	4.5	496
9	A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. Advanced Materials, 1999, 11, 850-852.	11.1	402
10	In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Applied Catalysis B: Environmental, 2018, 220, 417-428.	10.8	379
11	Robust Hollow Spheres Consisting of Alternating Titania Nanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO ₂ Conversion into Renewable Fuels. Advanced Functional Materials, 2012, 22, 1215-1221.	7.8	373
12	High-Yield Synthesis of Ultrathin and Uniform Bi ₂ WO ₆ Square Nanoplates Benefitting from Photocatalytic Reduction of CO ₂ into Renewable Hydrocarbon Fuel under Visible Light. ACS Applied Materials & Interfaces, 2011, 3, 3594-3601.	4.0	359
13	An In Situ Simultaneous Reductionâ€Hydrolysis Technique for Fabrication of TiO ₂ â€Graphene 2D Sandwichâ€Like Hybrid Nanosheets: Grapheneâ€Promoted Selectivity of Photocatalyticâ€Driven Hydrogenation and Coupling of CO ₂ into Methane and Ethane. Advanced Functional Materials. 2013. 23. 1743-1749.	7.8	357
14	Versatile Grapheneâ€Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications. Advanced Functional Materials, 2013, 23, 4996-5008.	7.8	335
15	Ultrathin, Single-Crystal WO ₃ Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO ₂ into Hydrocarbon Fuels under Visible Light. ACS Applied Materials & Interfaces, 2012, 4, 3372-3377.	4.0	332
16	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
17	Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Advanced Materials, 2010, 22, 67-71.	11.1	311
18	A Roomâ€Temperature Reactiveâ€Template Route to Mesoporous ZnGa ₂ O ₄ with Improved Photocatalytic Activity in Reduction of CO ₂ . Angewandte Chemie - International Edition, 2010, 49, 6400-6404.	7.2	307

#	Article	IF	CITATIONS
19	Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties. Advanced Functional Materials, 2009, 19, 3638-3643.	7.8	294
20	Hexahedron Prism-Anchored Octahedronal CeO ₂ : Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis. Journal of the American Chemical Society, 2015, 137, 9547-9550.	6.6	294
21	Formation of Uniform CuO Nanorods by Spontaneous Aggregation:Â Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solidâ~Liquid Phase Arc Discharge Process. Journal of Physical Chemistry B, 2005, 109, 14011-14016.	1.2	280
22	Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources, 2011, 196, 1012-1018.	4.0	258
23	A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chemistry of Materials, 1999, 11, 2310-2312.	3.2	255
24	Construction and Nanoscale Detection of Interfacial Charge Transfer of Elegant Z-Scheme WO ₃ /Au/In ₂ S ₃ Nanowire Arrays. Nano Letters, 2016, 16, 5547-5552.	4.5	217
25	Preparation of Highly Ordered Monolithic Super-Microporous Lamellar Silica with a Room-Temperature Ionic Liquid as Template via the Nanocasting Technique. Advanced Materials, 2003, 15, 1452-1455.	11.1	215
26	Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Applied Catalysis B: Environmental, 2019, 255, 117771.	10.8	212
27	A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids. Chemistry of Materials, 2004, 16, 544-550.	3.2	206
28	Convincing Synthesis of Atomically Thin, Single-Crystalline InVO ₄ Sheets toward Promoting Highly Selective and Efficient Solar Conversion of CO ₂ into CO. Journal of the American Chemical Society, 2019, 141, 4209-4213.	6.6	199
29	Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Transport. ACS Nano, 2018, 12, 3351-3359.	7.3	190
30	Formation of Silver Nanowires by a Novel Solidâ `Liquid Phase Arc Discharge Method. Chemistry of Materials, 1999, 11, 545-546.	3.2	178
31	High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale, 2012, 4, 3687.	2.8	166
32	Recent Advances in Ionic Liquids for Synthesis of Inorganic Nanomaterials. Current Nanoscience, 2005, 1, 35-42.	0.7	158
33	Polyhedral 30â€Faceted BiVO ₄ Microcrystals Predominantly Enclosed by Highâ€Index Planes Promoting Photocatalytic Waterâ€Splitting Activity. Advanced Materials, 2018, 30, 1703119.	11.1	155
34	Au@TiO ₂ yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO ₂ to solar fuel via a local electromagnetic field. Nanoscale, 2015, 7, 14232-14236.	2.8	153
35	Single-Crystalline, Ultrathin ZnGa ₂ O ₄ Nanosheet Scaffolds To Promote Photocatalytic Activity in CO ₂ Reduction into Methane. ACS Applied Materials & Interfaces, 2014, 6, 2356-2361.	4.0	151
36	Zn ₂ GeO ₄ crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO ₂ into CH ₄ under visible light after nitridation. Journal of Materials Chemistry, 2012, 22, 2033-2038.	6.7	145

#	Article	lF	CITATIONS
37	Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process. Journal of Materials Chemistry, 1999, 9, 1283-1287.	6.7	144
38	All-solid-state Z-scheme system arrays of Fe ₂ V ₄ O ₁₃ /RGO/CdS for visible light-driving photocatalytic CO ₂ reduction into renewable hydrocarbon fuel. Chemical Communications, 2015, 51, 800-803.	2.2	139
39	Photocatalytic reduction of CO ₂ over Ag/TiO ₂ nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale, 2016, 8, 11870-11874.	2.8	139
40	Foam–like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water–splitting. Applied Catalysis B: Environmental, 2019, 253, 246-252.	10.8	138
41	Construction of unique two-dimensional MoS ₂ –TiO ₂ hybrid nanojunctions: MoS ₂ as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO ₂ to methanol. Nanoscale, 2017, 9, 9065-9070.	2.8	134
42	Lipid Nanotubes: A Unique Template To Create Diverse One-Dimensional Nanostructures. Chemistry of Materials, 2008, 20, 625-633.	3.2	129
43	Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 2021, 12, 4747.	5.8	128
44	Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a π-Conjugated Polymer. Langmuir, 2002, 18, 277-283.	1.6	124
45	Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. Journal of Power Sources, 2007, 166, 514-518.	4.0	124
46	Multi-channeled hierarchical porous carbon incorporated Co 3 O 4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy, 2016, 20, 94-107.	8.2	122
47	Beyond C ₃ N ₄ π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chemical Society Reviews, 2021, 50, 2147-2172.	18.7	118
48	Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature. Chemical Communications, 2001, , 2518-2519.	2.2	115
49	A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructureElectronic supplementary information (ESI) available: Fig. S1. See http://www.rsc.org/suppdata/cc/b3/b307444g/. Chemical Communications, 2003, , 2564.	2.2	115
50	Elegant Construction of ZnIn ₂ S ₄ /BiVO ₄ Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2021, 13, 15092-15100.	4.0	115
51	One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: Polymorph-dependent conversion efficiency. Nano Energy, 2015, 11, 697-703.	8.2	108
52	Preparation and Characterization of a Novel Cocrystal Explosive. Crystal Growth and Design, 2011, 11, 1759-1765.	1.4	102
53	Making Patterns on Graphene. Advanced Materials, 2010, 22, 3615-3620.	11.1	100
54	State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: Design and dependent performance for solar energy conversion and environment applications. Materials Today, 2020, 33, 75-86.	8.3	97

#	Article	IF	CITATIONS
55	Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23868-23875.	4.0	95
56	Hexagonal Nanoplate-Textured Micro-Octahedron Zn ₂ SnO ₄ : Combined Effects toward Enhanced Efficiencies of Dye-Sensitized Solar Cell and Photoreduction of CO ₂ into Hydrocarbon Fuels. Crystal Growth and Design, 2012, 12, 1476-1481.	1.4	91
57	Zinc Gallogermanate Solid Solution: A Novel Photocatalyst for Efficiently Converting CO ₂ into Solar Fuels. Advanced Functional Materials, 2013, 23, 1839-1845.	7.8	89
58	Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale, 2013, 5, 3481.	2.8	89
59	Enriching Hot Electrons via NIRâ€Photonâ€Excited Plasmon in WS ₂ @Cu Hybrids for Fullâ€Spectrum Solar Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1804055.	7.8	89
60	Multilayer Hybrid Films of Titania Semiconductor Nanosheet and Silver Metal Fabricated via Layer-by-Layer Self-Assembly and Subsequent UV Irradiation. Chemistry of Materials, 2006, 18, 1235-1239.	3.2	86
61	In ³⁺ -doped BiVO ₄ photoanodes with passivated surface states for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 10456-10465.	5.2	83
62	Boosting O ₂ Reduction and H ₂ O Dehydrogenation Kinetics: Surface <i>N</i> â€Hydroxymethylation of <i>g</i> ₃ N ₄ Photocatalysts for the Efficient Production of H ₂ O ₂ . Advanced Functional Materials, 2022, 32, .	7.8	76
63	Bismuth Vacancy-Induced Efficient CO ₂ Photoreduction in BiOCl Directly from Natural Air: A Progressive Step toward Photosynthesis in Nature. Nano Letters, 2021, 21, 10260-10266.	4.5	74
64	An Ionâ€Exchange Phase Transformation to ZnGa ₂ O ₄ Nanocube Towards Efficient Solar Fuel Synthesis. Advanced Functional Materials, 2013, 23, 758-763.	7.8	72
65	Hollow spheres consisting of Ti _{0.91} 0 ₂ /CdS nanohybrids for CO ₂ photofixation. Chemical Communications, 2015, 51, 13354-13357.	2.2	71
66	Rational construction of a CdS/reduced graphene oxide/TiO ₂ core–shell nanostructure as an all-solid-state Z-scheme system for CO ₂ photoreduction into solar fuels. RSC Advances, 2015, 5, 88409-88413.	1.7	71
67	Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate. Materials Research Bulletin, 2014, 50, 73-78.	2.7	68
68	Instant Preparation of Self-Assembled Metal-Complexed Lipid Nanotubes That Act as Templates to Produce Metal-Oxide Nanotubes. Advanced Materials, 2007, 19, 242-246.	11.1	67
69	Facile Face-Down Annealing Triggered Remarkable Texture Development in CH ₃ NH ₃ PbI ₃ Films for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6104-6113.	4.0	67
70	State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today, 2019, 28, 100763.	6.2	67
71	Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe ₂ O ₃ /g-C ₃ N ₄ Z-Scheme System for Efficient CO ₂ Reduction into Solar Fuels. ACS Applied Energy Materials, 2020, 3, 6561-6572.	2.5	67
72	Rational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light. Nanoscale, 2013, 5, 11933.	2.8	66

#	Article	IF	CITATIONS
73	Helical Arrays of CdS Nanoparticles Tracing on a Functionalized Chiral Template of Glycolipid Nanotubes. Chemistry of Materials, 2006, 18, 403-406.	3.2	65
74	Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell. CrystEngComm, 2012, 14, 6462.	1.3	64
75	3D hierarchical architecture collaborating with 2D/2D interface interaction in NiAl-LDH/Ti3C2 nanocomposite for efficient and selective photoconversion of CO2. Journal of Energy Chemistry, 2021, 59, 9-18.	7.1	64
76	Monodispersed Nb ₂ O ₅ Microspheres: Facile Synthesis, Air/Water Interfacial Selfâ€Assembly, Nb ₂ O ₅ â€Based Composite Films, and Their Selective NO ₂ Sensing. Advanced Materials Interfaces, 2015, 2, 1500167.	1.9	62
77	Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel ï€-Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution. Langmuir, 2002, 18, 5287-5292.	1.6	61
78	Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel. APL Materials, 2015, 3, .	2.2	59
79	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 5257-5261.	7.2	58
80	Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 14341.	6.7	57
81	Anchoring of black phosphorus quantum dots onto WO ₃ nanowires to boost photocatalytic CO ₂ conversion into solar fuels. Chemical Communications, 2020, 56, 7777-7780.	2.2	57
82	Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells. Nanoscale, 2012, 4, 3490.	2.8	56
83	Construction of an all-solid-state artificial Z-scheme system consisting of Bi ₂ WO ₆ /Au/CdS nanostructure for photocatalytic CO ₂ reduction into renewable hydrocarbon fuel. Nanotechnology, 2017, 28, 274002.	1.3	56
84	Preparation of π-conjugated polymer-protected gold nanoparticles in stable colloidal form. Chemical Communications, 2001, , 613-614.	2.2	55
85	Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO. Chemical Communications, 2010, 46, 6388.	2.2	54
86	Gram-Scale Synthesis of Graphene Quantum Dots from Single Carbon Atoms Growth via Energetic Material Deflagration. Chemistry of Materials, 2015, 27, 4319-4327.	3.2	54
87	Electrodeposited amorphous cobalt phosphosulfide on Ni foams for highly efficient overall water splitting. Journal of Power Sources, 2019, 431, 182-188.	4.0	54
88	Improved Surface Charge Transfer in MoO3/BiVO4 Heterojunction Film for Photoelectrochemical Water Oxidation. Electrochimica Acta, 2017, 257, 181-191.	2.6	53
89	Na ₂ V ₆ O ₁₆ ·xH ₂ O nanoribbons: large-scale synthesis and visible-light photocatalytic activity of CO ₂ into solar fuels. Nanoscale, 2014, 6, 1896-1900.	2.8	50
90	Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale, 2019, 11, 11765-11773.	2.8	50

#	Article	IF	CITATIONS
91	One-step growth of 3D CoNi ₂ S ₄ nanorods and cross-linked NiCo ₂ S ₄ nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries. Chemical Communications, 2016, 52, 5258-5261.	2.2	49
92	Passivation Strategy of Reducing Both Electron and Hole Trap States for Achieving High-Efficiency PbS Quantum-Dot Solar Cells with Power Conversion Efficiency over 12%. ACS Energy Letters, 2020, 5, 3224-3236.	8.8	49
93	Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Research, 2019, 12, 2743-2748.	5.8	48
94	Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Advances, 2014, 4, .	0.6	47
95	Organic half-metal derived erythroid-like BiVO4/hm-C4N3 Z-Scheme photocatalyst: Reduction sites upgrading and rate-determining step modulation for overall CO2 and H2O conversion. Applied Catalysis B: Environmental, 2021, 295, 120277.	10.8	47
96	A convenient ultraviolet irradiation technique for in situ synthesis of CdS nanocrystallites at room temperature. Journal of Materials Chemistry, 2000, 10, 607-608.	6.7	46
97	Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor. Scientific Reports, 2012, 2, 698.	1.6	46
98	Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chemical Communications, 2014, 50, 14321-14324.	2.2	45
99	Thermodynamic and Kinetic Influence of Oxygen Vacancies on the Solar Water Oxidation Reaction of α-Fe ₂ O ₃ Photoanodes. ACS Applied Materials & Interfaces, 2020, 12, 11625-11634.	4.0	45
100	Surfactantâ€Assisted Preparation of Novel Layered Silver Bromideâ€Based Inorganic/Organic Nanosheets by Pulsed Laser Ablation in Aqueous Media. Advanced Functional Materials, 2007, 17, 3554-3561.	7.8	44
101	Al-ZnO/CdS Photoanode Modified with a Triple Functions Conformal TiO2 Film for Enhanced Photoelectrochemical Efficiency and Stability. Applied Catalysis B: Environmental, 2019, 255, 117738.	10.8	44
102	WO3 homojunction photoanode: Integrating the advantages of WO3 different facets for efficient water oxidation. Journal of Energy Chemistry, 2021, 56, 37-45.	7.1	44
103	Antimicrobial Nanotubes Consisting of Agâ€Embedded Peptidic Lipidâ€Bilayer Membranes as Delivery Vehicles. Advanced Materials, 2009, 21, 1742-1745.	11.1	41
104	Simple method for the fluorinated functionalization of graphene oxide. RSC Advances, 2013, 3, 3881.	1.7	41
105	Direct Growth of Fe ₂ V ₄ O ₁₃ Nanoribbons on a Stainless‣teel Mesh for Visibleâ€Light Photoreduction of CO ₂ into Renewable Hydrocarbon Fuel and Degradation of Gaseous Isopropyl Alcohol. ChemPlusChem, 2013, 78, 274-278.	1.3	41
106	Flux synthesis of regular Bi ₄ TaO ₈ Cl square nanoplates exhibiting dominant exposure surfaces of {001} crystal facets for photocatalytic reduction of CO ₂ to methane. Nanoscale, 2018, 10, 1905-1911.	2.8	41
107	In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: An absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO. Applied Catalysis B: Environmental, 2020, 264, 118470.	10.8	41
108	Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis, 2021, 11, 1242-1247.	5.5	41

#	Article	IF	CITATIONS
109	Fluorescent Nanotubes Consisting of CdS-Embedded Bilayer Membranes of a Peptide Lipid. Advanced Materials, 2007, 19, 1055-1058.	11.1	40
110	Necklace-like Chains of Hybrid Nanospheres Consisting of Pd Nanocystals and Peptidic Lipids. Journal of the American Chemical Society, 2009, 131, 2456-2457.	6.6	40
111	Preparation of an Fe ₂ Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 33558-33562.	1.7	40
112	Stateâ€ofâ€theâ€Art Progress in Diverse Black Phosphorusâ€Based Structures: Basic Properties, Synthesis, Stability, Photo―and Electrocatalysisâ€Driven Energy Conversion. Advanced Functional Materials, 2021, 31, 2005197.	7.8	40
113	Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells. Nanoscale, 2012, 4, 5454.	2.8	39
114	Synthesis of highly crystalline In2Ge2O7(En) hybrid sub-nanowires with ultraviolet photoluminescence emissions and their selective photocatalytic reduction of CO2 into renewable fuel. RSC Advances, 2012, 2, 3247.	1.7	39
115	Stainless steel mesh-supported three-dimensional hierarchical SnO2/Zn2SnO4 composite for the applications in solar cell, gas sensor, and photocatalysis. Applied Surface Science, 2020, 502, 144113.	3.1	39
116	Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. Journal of Materials Chemistry A, 2013, 1, 11790.	5.2	38
117	Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells. Nanoscale, 2013, 5, 5102.	2.8	38
118	Ultralong metahewettite CaV 6 O 16 ·3H 2 O nanoribbons as novel host materials for lithium storage: Towards high-rate and excellent long-term cyclability. Nano Energy, 2016, 22, 38-47.	8.2	38
119	Bi ₂ MoO ₆ Nanostrip Networks for Enhanced Visibleâ€Light Photocatalytic Reduction of CO ₂ to CH ₄ . ChemPhysChem, 2017, 18, 3240-3244.	1.0	38
120	Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe ₂ O ₃ Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 10141-10146.	4.0	38
121	Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy. Journal of Physical Chemistry Letters, 2018, 9, 3598-3603.	2.1	38
122	Hollow InVO ₄ Nanocuboid Assemblies toward Promoting Photocatalytic N ₂ Conversion Performance. Advanced Materials, 2021, 33, e2006780.	11.1	38
123	Lipid Nanotubes: Formation, Templating Nanostructures and Drug Nanocarriers. Critical Reviews in Solid State and Materials Sciences, 2008, 33, 183-196.	6.8	37
124	Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245.	3.1	37
125	Boosting the hydrogen evolution performance of a ternary Mo _x Co _{1â^'x} P nanowire array by tuning the Mo/Co ratio. Journal of Materials Chemistry A, 2019, 7, 14842-14848.	5.2	36
126	Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. Journal of Catalysis, 2017, 352, 113-119.	3.1	35

#	Article	IF	CITATIONS
127	Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO ₂ into liquid hydrocarbon fuels. RSC Advances, 2016, 6, 90792-90796.	1.7	34
128	Synthesis of bionic-macro/microporous MgO-modified TiO2 for enhanced CO2 photoreduction into hydrocarbon fuels. Chinese Journal of Catalysis, 2016, 37, 863-868.	6.9	34
129	Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2. Electrochimica Acta, 2018, 283, 871-881.	2.6	34
130	Nanowire-based hierarchical tin oxide/zinc stannate hollow microspheres: Enhanced solar energy utilization efficiency for dye-sensitized solar cells and photocatalytic degradation of dyes. Journal of Power Sources, 2015, 274, 575-581.	4.0	33
131	Zn <i>_x</i> Cd _{1â^'<i>x</i>} S tunable band structure-directing photocatalytic activity and selectivity of visible-light reduction of CO ₂ into liquid solar fuels. Nanotechnology, 2018, 29, 064003.	1.3	33
132	Enhanced Photoelectrochemical Water Oxidation Performance on BiVO ₄ by Coupling of CoMoO ₄ as a Hole-Transfer and Conversion Cocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 42207-42216.	4.0	33
133	Star-shaped multi-arm polymeric ionic liquid based on tetraalkylammonium cation as high performance gel electrolyte for lithium metal batteries. Electrochimica Acta, 2019, 301, 284-293.	2.6	33
134	Three-dimensional Bi2MoO6/TiO2 array heterojunction photoanode modified with cobalt phosphate cocatalyst for high-efficient photoelectrochemical water oxidation. Catalysis Today, 2019, 335, 262-268.	2.2	33
135	Electrocatalytic fixation of N ₂ into NO ₃ ^{â^²} : electron transfer between oxygen vacancies and loaded Au in Nb ₂ O _{5â^²<i>x</i>} nanobelts to promote ambient nitrogen oxidation. Journal of Materials Chemistry A, 2021, 9, 17442-17450.	5.2	33
136	Strained heterointerfaces in sandwich–like NiFe layered double hydroxides/Co1-xS for highly efficient and superior long–term durable oxygen evolution reaction. Journal of Catalysis, 2020, 389, 132-139.	3.1	32
137	Objective Findings on the K-Doped <i>g</i> -C ₃ N ₄ Photocatalysts: The Presence and Influence of Organic Byproducts on K-Doped <i>g</i> -C ₃ N ₄ Photocatalysis. Langmuir, 2021, 37, 4859-4868.	1.6	32
138	Preparation and studies of Ag–TiO2 hybrid nanoparticles of core-shell structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 67, 95-98.	1.7	31
139	Generalized synthesis of a family of multishelled metal oxide hollow microspheres. Journal of Materials Chemistry A, 2013, 1, 3575.	5.2	31
140	Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery. Electrochimica Acta, 2019, 324, 134827.	2.6	31
141	Exquisite design of porous carbon microtubule-scaffolding hierarchical In ₂ O ₃ -ZnIn ₂ S ₄ heterostructures toward efficient photocatalytic conversion of CO ₂ into CO. Nanoscale, 2020, 12, 14676-14681.	2.8	31
142	Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting. Advanced Science, 2022, 9, e2103744.	5.6	31
143	Synthesis of Bi6Mo2O15 sub-microwires via a molten salt method and enhancing the photocatalytic reduction of CO2 into solar fuel through tuning the surface oxide vacancies by simple post-heating treatment. CrystEngComm, 2013, 15, 9855.	1.3	30
144	Boosting solar water oxidation activity and stability of BiVO4 photoanode through the Co-catalytic effect of CuCoO2. Electrochimica Acta, 2019, 304, 301-311.	2.6	30

#	Article	IF	CITATIONS
145	Engineering Selfâ€Reconstruction via Flexible Components in Layered Double Hydroxides for Superiorâ€Evolving Performance. Small, 2021, 17, e2101671.	5.2	30
146	<i>In situ</i> construction of a 2D/2D heterostructured Znln ₂ S ₄ /Bi ₂ MoO ₆ <i>Z</i> scheme system for boosting the photoreduction activity of Cr(<scp>vi</scp>). Catalysis Science and Technology, 2021, 11, 3885-3893.	2.1	30
147	Recent Progress in Biomolecule-Templated Nanomaterials. Current Nanoscience, 2006, 2, 123-134.	0.7	29
148	Construction of Visible-Light-Responsive SrTiO3 with Enhanced CO2 Adsorption Ability: Highly Efficient Photocatalysts for Artifical Photosynthesis. Catalysis Letters, 2015, 145, 640-646.	1.4	29
149	Unconventional gas-based bottom-up, meter-area-scale fabrication of hydrogen-bond free g-CN nanorod arrays and coupling layers with TiO ₂ toward high-efficiency photoelectrochemical performance. Nanoscale, 2018, 10, 3342-3349.	2.8	29
150	Highly symmetrical, 24-faceted, concave BiVO ₄ polyhedron bounded by multiple high-index facets for prominent photocatalytic O ₂ evolution under visible light. Chemical Communications, 2019, 55, 4777-4780.	2.2	29
151	Compacted stainless steel mesh-supported Co3O4 porous nanobelts for HCHO catalytic oxidation and Co3O4@Co3S4 via in situ sulfurization as platinum-free counter electrode for flexible dye-sensitized solar cells. Applied Surface Science, 2021, 536, 147815.	3.1	29
152	Egg-white-mediated crystallization of calcium carbonate. Journal of Crystal Growth, 2012, 361, 217-224.	0.7	28
153	One step fabrication of Mn 3 O 4 /carbonated bacterial cellulose with excellent catalytic performance upon ammonium perchlorate decomposition. Materials Research Bulletin, 2014, 60, 802-807.	2.7	28
154	In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale, 2016, 8, 2304-2308.	2.8	28
155	Ferrous sulfide-assisted hollow carbon spheres as sulfur host for advanced lithium-sulfur batteries. Chemical Engineering Journal, 2017, 326, 1040-1047.	6.6	28
156	Single Pd–S <i>_x</i> Sites <i>In Situ</i> Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C–N Coupling. ACS Catalysis, 2022, 12, 4481-4490.	5.5	28
157	Multi-layered MoS ₂ phototransistors as high performance photovoltaic cells and self-powered photodetectors. RSC Advances, 2015, 5, 45239-45248.	1.7	27
158	Electrophoretic deposition of graphene-TiO2 hierarchical spheres onto Ti thread for flexible fiber-shaped dye-sensitized solar cells. Materials and Design, 2016, 105, 352-358.	3.3	27
159	Series of ZnSn(OH) ₆ Polyhedra: Enhanced CO ₂ Dissociation Activation and Crystal Facet-Based Homojunction Boosting Solar Fuel Synthesis. Inorganic Chemistry, 2017, 56, 5704-5709.	1.9	27
160	Ultrathin LiFePO 4 nanosheets self-assembled with reduced graphene oxide applied in high rate lithium ion batteries for energy storage. Applied Energy, 2017, 195, 1079-1085.	5.1	27
161	Unique homo–heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn–Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO ₂ into solar fuels. Chemical Communications, 2018, 54, 5126-5129.	2.2	27
162	Pyridinic-nitrogen highly doped nanotubular carbon arrays grown on a carbon cloth for high-performance and flexible supercapacitors. Nanoscale, 2018, 10, 3981-3989.	2.8	27

#	Article	IF	CITATIONS
163	Bimetallic oxyhydroxide <i>in situ</i> derived from an Fe ₂ Co-MOF for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 13271-13278.	5.2	27
164	Insight into the Kinetic Influence of Oxygen Vacancies on the WO ₃ Photoanodes for Solar Water Oxidation. Journal of Physical Chemistry Letters, 2019, 10, 6159-6165.	2.1	25
165	Synthesis of α-Fe ultrafine particles in a saturated salt solution/isopropanol/PVP microemulsion and their structural characterization. Materials Research Bulletin, 2000, 35, 53-58.	2.7	24
166	Hen eggwhite-mediated stack crystallization of calcium carbonate. Journal of Crystal Growth, 2010, 312, 831-836.	0.7	24
167	Thermally Stable Allâ€Perovskite Tandem Solar Cells Fully Using Metal Oxide Charge Transport Layers and Tunnel Junction. Solar Rrl, 2021, 5, 2100814.	3.1	24
168	Aligned Nanocables: Controlled Sheathing of CuO Nanowires by a Selfâ€Assembled Tubular Glycolipid. Advanced Materials, 2007, 19, 4194-4197.	11.1	23
169	Versatile nanobead-scaffolded N-SnO2mesoporous microspheres: one-step synthesis and superb performance in dye-sensitized solar cell, gas sensor, and photocatalytic degradation of dye. Journal of Materials Chemistry A, 2013, 1, 524-531.	5.2	23
170	Engineering Interfaces to Steer Hole Dynamics of BiVO ₄ Photoanodes for Solar Water Oxidation. Solar Rrl, 2019, 3, 1900115.	3.1	23
171	Refined Z-scheme charge transfer in facet-selective BiVO4/Au/CdS heterostructure for solar overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 8531-8538.	3.8	23
172	Nanostructured SnO2 photoanode-based dye-sensitized solar cells. Science Bulletin, 2014, 59, 2122-2134.	1.7	22
173	Boosted Water Oxidation Activity and Kinetics on BiVO4 Photoanodes with Multihigh-Index Crystal Facets. Inorganic Chemistry, 2018, 57, 15280-15288.	1.9	22
174	Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18396-18402.	5.2	22
175	Photoelectrochemical driving and clean synthesis of energetic salts of 5,5′-azotetrazolate at room temperature. Green Chemistry, 2018, 20, 3722-3726.	4.6	22
176	A novel in situ simultaneous polymerization–hydrolysis technique for fabrication of polyacrylamide–semiconductor MS(M = Cd, Zn, Pb) nanocomposites. Chemical Communications, 1999, , 1229-1230.	2.2	21
177	Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation. Scientific Reports, 2016, 6, 32712.	1.6	21
178	Cu ₃ Mo ₂ O ₉ /BiVO ₄ Heterojunction Films with Integrated Thermodynamic and Kinetic Advantages for Solar Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 14082-14090.	3.2	21
179	Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO ₂ into Renewable Hydrocarbon Fuels. Inorganic Chemistry, 2014, 53, 359-364.	1.9	20
180	TiO2 nanosheet-anchoring Au nanoplates: high-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction. RSC Advances, 2016, 6, 81510-81516.	1.7	20

#	Article	IF	CITATIONS
181	PbI2 heterogeneous-cap-induced crystallization for an efficient CH3NH3PbI3 layer in perovskite solar cells. Chemical Communications, 2017, 53, 5032-5035.	2.2	20
182	Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks. Dalton Transactions, 2017, 46, 8204-8218.	1.6	20
183	MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation. Journal of Materials Science, 2019, 54, 671-682.	1.7	20
184	Reduced-graphene-oxide-loaded MoS2‡Ni3S2 nanorod arrays on Ni foam as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Electrochemistry Communications, 2019, 99, 22-26.	2.3	20
185	Achieving Direct <i>Z</i> -Scheme Charge Transfer through Constructing 2D/2D α-Fe ₂ O ₃ /CdS Heterostructure for Efficient Photocatalytic CO ₂ Conversion. Journal of Physical Chemistry C, 2021, 125, 23142-23152.	1.5	20
186	State-of-the-art advancements of transition metal oxides as photoelectrode materials for solar water splitting. Rare Metals, 2022, 41, 2370-2386.	3.6	20
187	Boosting photocatalytic CO ₂ reduction <i>via</i> Schottky junction with ZnCr layered double hydroxide nanoflakes aggregated on 2D Ti ₃ C ₂ T _{<i>x</i>} cocatalyst. Nanoscale, 2022, 14, 7538-7546.	2.8	20
188	Preparation of Shell–Core Cu2O–Cu Nanocomposite Particles and Cu Nanoparticles in a New Microemulsion System. Journal of Colloid and Interface Science, 1999, 220, 468-470.	5.0	19
189	A promising hybrid scaffold material: Bacterial cellulose in-situ assembling biomimetic lamellar CaCO3. Materials Letters, 2013, 102-103, 91-93.	1.3	19
190	Integration of Fe _x S electrocatalysts and simultaneously generated interfacial oxygen vacancies to synergistically boost photoelectrochemical water splitting of Fe ₂ O ₃ photoanodes. Chemical Communications, 2018, 54, 13817-13820.	2.2	19
191	The interparticle distance limit for multiple exciton dissociation in PbS quantum dot solid films. Nanoscale Horizons, 2019, 4, 445-451.	4.1	19
192	Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO ₂ Film to Boost Photocatalytic Conversion of CO ₂ into CO. Nano Letters, 2021, 21, 5060-5067.	4.5	19
193	Insight into the Improvement Mechanism of Copper Oxide/BiVO ₄ Heterojunction Photoanodes for Solar Water Oxidation. Journal of the Electrochemical Society, 2019, 166, H513-H520.	1.3	18
194	Direct Z scheme-fashioned photoanode systems consisting of Fe ₂ O ₃ nanorod arrays and underlying thin Sb ₂ Se ₃ layers toward enhanced photoelectrochemical water splitting performance. Nanoscale, 2019, 11, 109-114.	2.8	18
195	A Novel in Situ Simultaneous Copolymerizationâ^'Decomposition Technique for Fabrication of Poly(acrylamide-co-styrene)-Semiconductor CdE (E = S, Se) Nanorod Nanocomposites. Chemistry of Materials, 1999, 11, 3411-3413.	3.2	17
196	Preparation and dielectric properties of SiC nanowires self-sacrificially templated by carbonated bacterial cellulose. Materials Research Bulletin, 2013, 48, 687-690.	2.7	17
197	Microstructure modulation of the CH3NH3PbI3 layer in perovskite solar cells by 2-propanol pre-wetting and annealing in a spray-assisted solution process. Journal of Materials Chemistry A, 2016, 4, 11372-11380.	5.2	17
198	Robust, double-shelled ZnGa ₂ O ₄ hollow spheres for photocatalytic reduction of CO ₂ to methane. Dalton Transactions, 2017, 46, 10564-10568.	1.6	17

#	Article	IF	CITATIONS
199	Two-photon excited photoluminescence of single perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 154201.	1.2	17
200	Dicationic tetraalkylammonium-based polymeric ionic liquid with star and four-arm topologies as advanced solid-state electrolyte for lithium metal battery. Reactive and Functional Polymers, 2019, 145, 104375.	2.0	17
201	BiVO ₄ tubular structures: oxygen defect-rich and largely exposed reactive {010} facets synergistically boost photocatalytic water oxidation and the selective Nî€N coupling reaction of 5-amino-1 <i>H</i> -tetrazole. Chemical Communications, 2019, 55, 5635-5638.	2.2	17
202	Nitrogen-Doped Carbon Nanolayer Coated Hematite Nanorods for Efficient Photoelectrocatalytic Water Oxidation. Applied Catalysis B: Environmental, 2020, 275, 119113.	10.8	17
203	Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221, 117032.	1.5	17
204	Synthesis and characterization of NiP–TiO2 ultrafine composite particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 135-137.	1.7	16
205	Nanosheet-assembling Hierarchical Zinc Stannate Microspheres for Enhanced Efficiency of Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 152, 25-30.	2.6	16
206	Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability. Nanoscale, 2018, 10, 19621-19627.	2.8	16
207	Selective doping of titanium into double layered hematite nanorod arrays for improved photoelectrochemical water splitting. Applied Surface Science, 2019, 486, 312-322.	3.1	16
208	Synthesis and Optimization of Ti/Li/Al Ternary Layered Double Hydroxides for Efficient Photocatalytic Reduction of CO2 to CH4. Scientific Reports, 2019, 9, 5659.	1.6	16
209	Formation of 3D interconnectively macro/mesoporous TiO ₂ sponges through gelation of lotus root starch toward CO ₂ photoreduction into hydrocarbon fuels. RSC Advances, 2014, 4, 43172-43177.	1.7	15
210	High-performance photodetectors based on bandgap engineered novel layer GaSe _{0.5} Te _{0.5} nanoflakes. RSC Advances, 2016, 6, 60862-60868.	1.7	15
211	Porous nanosheet-based hierarchical zinc oxide aggregations grown on compacted stainless steel meshes: Enhanced flexible dye-sensitized solar cells and photocatalytic activity. Materials Research Bulletin, 2016, 80, 191-199.	2.7	15
212	Simple fabrication of Z-scheme MgIn ₂ S ₄ /Bi ₂ WO ₆ hierarchical heterostructures for enhancing photocatalytic reduction of Cr(<scp>vi</scp>). Catalysis Science and Technology, 2021, 11, 6271-6280.	2.1	15
213	In situ cyclodextrin-based homogeneous incorporation of metal (M = Pd, Pt, Ru) nanoparticles into silica with bimodal pore structureElectronic supplementary information (ESI) available: SEM images and isotherm N2 sorption of the cyclodextrin-based homogeneous incorporation of Pd nanoparticles into silica with bimodal pore structure. See http://www.rsc.org/suppdata/cc/b2/b210590j/. Chemical	2.2	14
214	Communications, 2003, , 262-263. Non-basic solution eco-routes to nano-scale NiO with different shapes: Synthesis and application. Materials Chemistry and Physics, 2011, 126, 494-499.	2.0	14
215	Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres. Scientific Reports, 2013, 3, 2315.	1.6	14
216	Surface-state-mediated interfacial charge dynamics between carbon dots and ZnO toward highly promoting photocatalytic activity. Journal of Chemical Physics, 2020, 153, 044708.	1.2	14

#	Article	IF	CITATIONS
217	Pyridine-Diketopyrrolopyrrole-Based Novel Metal-Free Visible-Light Organophotoredox Catalyst for Atom-Transfer Radical Polymerization. Journal of Physical Chemistry A, 2020, 124, 1068-1075.	1.1	14
218	3D Hydrangeaâ€like InVO ₄ /Ti ₃ C ₂ T _x Hierarchical Heterosystem Collaborating with 2D/2D Interface Interaction for Enhanced Photocatalytic CO ₂ Reduction. ChemNanoMat, 2021, 7, 815-823.	1.5	14
219	<i>In situ</i> preparation of Bi ₂ S ₃ nanoribbon-anchored BiVO ₄ nanoscroll heterostructures for the catalysis of Cr(<scp>vi</scp>) photoreduction. Catalysis Science and Technology, 2020, 10, 3843-3847.	2.1	14
220	In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO ₂ Nanorod Photoanodes. Journal of Physical Chemistry Letters, 2021, 12, 10815-10822.	2.1	14
221	One-Dimensional Confinement of CdS Nanodots and Subsequent Formation of CdS Nanowires by Using a Glycolipid Nanotube as a Ship-in-Bottle Scaffold. Journal of Physical Chemistry C, 2008, 112, 18412-18416.	1.5	13
222	Near-infrared reflectance and thermal performance of Na 2 V 6 O 16 ·xH 2 O nanoribbon as a novel cool brown pigment. Dyes and Pigments, 2015, 123, 242-247.	2.0	13
223	Fabrication of Oxygenâ€Doped Doubleâ€Shelled GaN Hollow Spheres toward Efficient Photoreduction of CO ₂ . Particle and Particle Systems Characterization, 2016, 33, 583-588.	1.2	13
224	Self-templated preparation of hollow mesoporous TiN microspheres as sulfur host materials for advanced lithium–sulfur batteries. Journal of Materials Science, 2018, 53, 10363-10371.	1.7	13
225	Mimetic biomineralization matrix using bacterial cellulose hydrogel and egg white to prepare various morphologies of CaCO ₃ . CrystEngComm, 2018, 20, 4536-4540.	1.3	13
226	Hollow BiVO4/Bi2S3 cruciate heterostructures with enhanced visible-light photoactivity. Catalysis Science and Technology, 2019, 9, 182-187.	2.1	13
227	Room Temperature Surface Modification of Ultrathin FeOOH Cocatalysts on Fe ₂ O ₃ Photoanodes for High Photoelectrochemical Water Splitting. Journal of Nanomaterials, 2020, 2020, 1-7.	1.5	13
228	Direct Z-scheme hierarchical heterostructures of oxygen-doped g-C ₃ N ₄ /In ₂ S ₃ with efficient photocatalytic Cr(<scp>vi</scp>) reduction activity. Catalysis Science and Technology, 2021, 11, 7963-7972.	2.1	13
229	A Convenient Ultraviolet Irradiation Technique for Fabrication of Silver-polymer Nanocomposites. Chemistry Letters, 1999, 28, 677-678.	0.7	12
230	Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template. Materials Research Bulletin, 2003, 38, 723-729.	2.7	12
231	The maximum limiting performance improved counter electrode based on a porous fluorine doped tin oxide conductive framework for dye-sensitized solar cells. Nanoscale, 2013, 5, 4951.	2.8	12
232	Controlled crystallization of lamellar calcium carbonate crystals induced by solution of sticky rice polysaccharide (from Oryza sativa). CrystEngComm, 2014, 16, 11042-11049.	1.3	12
233	Influence of copper (II) on biomineralization of CaCO3 and preparation of micron pearl-like biomimetic CaCO3. Ceramics International, 2019, 45, 14354-14359.	2.3	12
234	Magnetic field improved photoelectrochemical synthesis of 5,5′-azotetrazolate energetic salts and hydrogen in a hematite photoanode-based cell. Electrochimica Acta, 2020, 330, 135217.	2.6	12

#	Article	IF	CITATIONS
235	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixation. Angewandte Chemie, 2021, 133, 5317-5321.	1.6	12
236	Dimensional matched ultrathin BiVO4/Ti3C2Tx heterosystem for efficient photocatalytic conversion of CO2 to methanol. Materials Letters, 2022, 306, 130937.	1.3	12
237	Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets. Optics Express, 2012, 20, 28801.	1.7	11
238	Ultrathin nanosheet-anchored hexahedral prismatic Bi ₂ MoO ₆ arrays: one-step constructed and crystal facet-based homojunctions boosting photocatalytic CO ₂ reduction and N ₂ fixation. Catalysis Science and Technology, 2019, 9, 7045-7050.	2.1	11
239	Plasmonic Cocatalyst with Electric and Thermal Stimuli Boots Solar Hydrogen Evolution. Solar Rrl, 2020, 4, 2000094.	3.1	11
240	Convenient Synthesis of 5,5′-azotetrazolate Energetic Salts through Electrochemical Oxidative-Coupling of 5-amino-1 <i>H</i> -tetrazole Under Mild Conditions. Journal of the Electrochemical Society, 2020, 167, 065503.	1.3	11
241	Valence Regulation of Ultrathin Cerium Vanadate Nanosheets for Enhanced Photocatalytic CO2 Reduction to CO. Catalysts, 2021, 11, 1115.	1.6	11
242	Synthesis of Fe3O4 powder by a novel arc discharge method. Materials Research Bulletin, 2000, 35, 755-759.	2.7	10
243	Facile fabrication of three-dimensional mesoporous Si/SiC composites via one-step magnesiothermic reduction at relative low temperature. Materials Research Bulletin, 2013, 48, 4139-4145.	2.7	10
244	Electrical characterization of H2S adsorption on hexagonal WO3 nanowire at room temperature. Journal of Applied Physics, 2014, 116, 164310.	1.1	10
245	PVA-templated Assembly of Pd Nanorod and Pd Fractal Pattern. Journal of Nanoparticle Research, 1999, 1, 479-483.	0.8	9
246	Preparation of nanocrystalline silver by the method of liquid-solid arc discharge combined with hydrothermal treatment. Materials Research Bulletin, 1999, 34, 1683-1688.	2.7	9
247	Synthesis of Nanowires and Coral-Shaped Nanostructures of Ag by an Ultraviolet Photo-Reduction Technique at Room Temperature. Chemistry Letters, 2001, 30, 1192-1193.	0.7	9
248	Patenting Activity in Synthesis of Lipid Nanotubes and Peptide Nanotubes. Recent Patents on Nanotechnology, 2007, 1, 21-28.	0.7	9
249	Two-Step Synthesis of Laminar Vanadate via a Facile Hydrothermal Route and Enhancing the Photocatalytic Reduction of CO ₂ into Solar Fuel through Tuning of the Oxygen Vacancies by in Situ Vacuum Illumination Treatment. ACS Applied Energy Materials, 2018, 1, 6857-6864.	2.5	9
250	Lipid Nanotubes as Scaffold Toward Construction of One-Dimensional Nanostructures. Science of Advanced Materials, 2010, 2, 359-364.	0.1	9
251	Preparation of metal or alloy sulfide nanoparticles by electrochemical deposition. Materials Research Bulletin, 2000, 35, 1463-1468.	2.7	8
252	Controllable electrophoresis deposition of TiO ₂ mesoporous spheres onto Ti threads as photoanodes for fiber-shaped dye-sensitized solar cells. RSC Advances, 2015, 5, 65005-65009.	1.7	8

#	Article	IF	CITATIONS
253	Biomimetic interfacial assembly of CaCO3 microspheres using egg-white foam and their interaction with Sr2+. Ceramics International, 2017, 43, 12870-12875.	2.3	8
254	Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors, 2020, 41, 091709.	2.0	8
255	Unpaired Electron-Induced Wide-Range Light Absorption within Zn (or Cu) MOFs Containing Electron-Withdrawing Ligands: A Theoretical and Experimental Study. Journal of Physical Chemistry A, 2020, 124, 5314-5322.	1.1	8
256	A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. , 1999, 11, 850.		8
257	Molybdenum Sulfide Quantum Dots Decorated on TiO ₂ for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 702-709.	2.4	8
258	A Novel in situ Ultraviolet Irradiation Polymerization–Photolysis Technique for Fabrication of Polyacrylamide-MS (M = Cd, Pb, Zn) Nanocomposites at Room Temperature. Chemistry Letters, 2000, 29, 1308-1309.	0.7	7
259	Fabrication and Electrochemical Characterization of Molecularly Alternating Self-Assembled Films and Capsules of Titania Nanosheets and Gold Nanoparticles. Current Nanoscience, 2007, 3, 155-160.	0.7	7
260	Photoconversion: Photocatalytic Conversion of CO ₂ into Renewable Hydrocarbon Fuels: Stateâ€ofâ€ŧheâ€Art Accomplishment, Challenges, and Prospects (Adv. Mater. 27/2014). Advanced Materials, 2014, 26, 4598-4598.	11.1	7
261	Photoelectrochemical Driving and Simultaneous Synthesis of 3-pyridinecarboxylic Acid and Hydrogen in WO ₃ Photoanode-Based Cell. Journal of the Electrochemical Society, 2019, 166, H662-H668.	1.3	7
262	α-Fe ₂ O ₃ /Ag/CdS ternary heterojunction photoanode for efficient solar water oxidation. Catalysis Science and Technology, 2021, 11, 5859-5867.	2.1	7
263	Dual-functional water splitting: Electro-fenton-like pollutants degradation from anode reaction and hydrogen fuel production from cathode reaction. Electrochimica Acta, 2021, 394, 139122.	2.6	7
264	Pushing the Limits of Energy Performance in Micron-Sized Thermite: Core–Shell Assembled Liquid Metal-Modified Al@Fe ₂ O ₃ Thermites. ACS Applied Energy Materials, 2021, 4, 11777-11786.	2.5	7
265	Electron pump strengthened facet engineering: Organic half-metallic C(CN)3 enclosed (100) facet exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2022, 317, 121660.	10.8	7
266	Severe corrosion of copper in a highly alkaline egg white solution due to a biuret corrosion reaction. Corrosion Science, 2015, 94, 270-274.	3.0	6
267	A Compact and Smooth CH3NH3PbI3 Film: Investigation of Solvent Sorts and Concentrations of CH3NH3I towards Highly Efficient Perovskite Solar Cells. Nanomaterials, 2018, 8, 897.	1.9	6
268	Biomimetic assembly of multilevel hydroxyapatite using bacterial cellulose hydrogel as a reactor. CrystEngComm, 2019, 21, 4859-4863.	1.3	6
269	Egg white-assisted preparation of inorganic functional materials: A sustainable, eco-friendly, low-cost and multifunctional method. Ceramics International, 2019, 45, 23869-23889.	2.3	6
270	Hole dynamic acceleration over CdSO nanoparticles for high-efficiency solar hydrogen production with urea photolysis. Journal of Materials Chemistry A, 2019, 7, 25650-25656.	5.2	6

#	Article	IF	CITATIONS
271	Few-Layer Pbl ₂ Nanoparticle: A 2D Semiconductor with Lateral Quantum Confinement. Journal of Physical Chemistry Letters, 2019, 10, 7863-7869.	2.1	6
272	Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles. Molecules, 2022, 27, 833.	1.7	6
273	Resorcinol-formaldehyde resin nanoparticles as surface charge transfer and separation sites for the improvement of BiVO4 film photoanodes' performance in solar water oxidation. Applied Surface Science, 2022, 601, 154236.	3.1	6
274	Morphology control and optical properties of organic nanostructures based on thermotropic liquid crystalline benzoylated bacterial cellulose. Carbohydrate Polymers, 2010, 80, 551-554.	5.1	5
275	Egg-white Templating of Hierarchically Macroporous Architectures of SiO2, TiO2 and C/SiCN Nanocables, and Photocatalytic Properties. Current Nanoscience, 2011, 7, 1004-1008.	0.7	5
276	Instant, template-free and fluorine-free synthesis of TiO2 nanotube arrays with a room-temperature solid–liquid arc discharge technique. CrystEngComm, 2012, 14, 7583.	1.3	5
277	In situ growth of zinc oxide nanoribbons within the interstices of a zinc stannate nanoplates network on compacted woven metal wires and their enhanced solar energy application. Electrochimica Acta, 2018, 262, 124-134.	2.6	5
278	Improving the photovoltaic effect by resistive switching. Applied Physics Letters, 2018, 113, 133901.	1.5	5
279	Dendrite growth of energetic material RDX. Journal of Crystal Growth, 2012, 351, 56-61.	0.7	4
280	Synthesis of hierarchical ordered porous functional materials using willow wickers as templates for recyclable photo-catalytic applications. Journal of Porous Materials, 2016, 23, 225-230.	1.3	4
281	Recycled photocatalyst and available photodetector based on ternary Bi6Mo2O15 sub-microcrystals. Results in Physics, 2019, 13, 102117.	2.0	4
282	Plasmonic Cocatalyst with Electric and Thermal Stimuli Boots Solar Hydrogen Evolution. Solar Rrl, 2020, 4, 2070062.	3.1	4
283	Construction of unique heterojunction photoanodes through <i>in situ</i> quasi-epitaxial growth of FeVO ₄ on Fe ₂ O ₃ nanorod arrays for enhanced photoelectrochemical performance. Catalysis Science and Technology, 2022, 12, 4372-4379.	2.1	4
284	A Simple In Situ Hydrogen Bond Interaction to Homogeneous Dispersion of Gold Nanoparticles in SiO2Matrix Using Dendrimer as Template. Chemistry Letters, 2002, 31, 1170-1171.	0.7	3
285	Accurate Understanding the Catalytic Role of MnO2 in the Oxidative-Coupling of 2-naphthols into 1,1′-bi-2-naphthols. Catalysis Letters, 2021, 151, 901-908.	1.4	3
286	The Fabrication of CuInSe2–Polyacrylamide Nanocomposites by a Convenient Simultaneous Polymerization–Decomposition Technique. Chemistry Letters, 2001, 30, 136-137.	0.7	2
287	Monodispersed Particles: Monodispersed Nb ₂ O ₅ Microspheres: Facile Synthesis, Air/Water Interfacial Selfâ€Assembly, Nb ₂ O ₅ â€Based Composite Films, and Their Selective NO ₂ Sensing (Adv. Mater. Interfaces 11/2015). Advanced Materials Interfaces. 2015. 2.	1.9	2
288	Room-Temperature Preparation of Cobalt-Based Electrocatalysts through Simple Solution Treatment for Selectively High-Efficiency Hydrogen Evolution Reaction in Alkaline or Acidic Medium. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	2

#	Article	IF	CITATIONS
289	Photocatalytic oxidative-coupling of 5-amino-1H-tetrazole for the synthesis of 5,5â€2-azotetrazolate energetic salts at mild conditions. Catalysis Communications, 2020, 136, 105923.	1.6	2
290	Large-scale Synthesis of Aligned MoO ₃ Nanobelt Arrays on Silicon Substrates for Nanoenergetics-on-a-chip. Current Nanoscience, 2014, 10, 566-572.	0.7	2
291	Research Progress in Photocatalytic Conversion of CO2 to Hydrocarbons. Chinese Journal of Catalysis, 2014, 32, 1565-1572.	6.9	2
292	Controllable synthesis of Co–Al layered double hydroxides with different anionic intercalation layers for the efficient removal of methyl orange. Environmental Technology (United Kingdom), 2023, 44, 3004-3017.	1.2	2
293	Influence of charge transport layer on the crystallinity and charge extraction of pure tin-based halide perovskite film. Journal of Energy Chemistry, 2022, 69, 612-615.	7.1	2
294	Development of an alkaline electro-Fenton process based on the synthesis of H ₂ O ₂ in bicarbonate electrolytes. Catalysis Science and Technology, 2022, 12, 3436-3439.	2.1	2
295	Singleâ€Photon Emission from Single Microplate MAPbl ₃ Nanocrystals with Ultranarrow Photoluminescence Linewidths and Exciton Fine Structures. Advanced Optical Materials, 0, , 2200606.	3.6	2
296	lonic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. ChemInform, 2004, 35, no.	0.1	1
297	Nanoparticle-based hierarchical zinc oxide chains for enhanced efficiency of dye-sensitized solar cells. RSC Advances, 2015, 5, 103030-103035.	1.7	0
298	Self-assembled 3D-hierarchical structure Cu2ZnSnS4photocathodes by tuning anion ratios in precursor solution. Journal Physics D: Applied Physics, 2016, 49, 105102.	1.3	0
299	Non-isodiametric growth and confinement effect in the mineralisation of witherite. Mineralogical Magazine, 2020, 84, 524-532.	0.6	0
300	Fabrication and Characterization of Monolithic 3D Amorphous Silicon Inverse-opal Photonic Materials with Magnesiothermic Reduction at a Lower Temperature. Current Nanoscience, 2016, 12, 482-486.	0.7	0
301	Construction and Nanoscale Detection of Interfacial Charge Transfer of Elegant Z-Scheme WO/Au/InS Nanowire Arrays. Nano Letters, 2016, , .	4.5	0