
Joana Lea Meira Silveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers, 2015, 7, 777-803.	4.5	345
2	Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: Effect of drying method. Carbohydrate Polymers, 2009, 76, 86-93.	10.2	107
3	Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. International Journal of Pharmaceutics, 2005, 296, 1-11.	5.2	100
4	Rheological and structural characteristics of peach tree gum exudate. Food Hydrocolloids, 2010, 24, 486-493.	10.7	90
5	Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. International Journal of Biological Macromolecules, 2002, 31, 9-17.	7.5	86
6	NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydrate Polymers, 2013, 94, 511-519.	10.2	79
7	Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydrate Polymers, 2013, 93, 266-272.	10.2	66
8	Determination of heat-set gelation capacity of a quinoa protein isolate (Chenopodium quinoa) by dynamic oscillatory rheological analysis. Food Chemistry, 2017, 232, 263-271.	8.2	62
9	Xanthan–galactomannan interactions as related to xanthan conformations. International Journal of Biological Macromolecules, 1998, 23, 263-275.	7.5	61
10	Catastrophic inversion and rheological behavior in soy lecithin and Tween 80 based food emulsions. Journal of Food Engineering, 2013, 116, 72-77.	5.2	59
11	Study of solution properties of galactomannan from the seeds of Mimosa scabrella. Carbohydrate Polymers, 1992, 17, 171-175.	10.2	54
12	Viscometric studies on xanthan and galactomannan systems. Carbohydrate Polymers, 1997, 33, 131-138.	10.2	52
13	Three exopolysaccharides of the β-(1→6)-d-glucan type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydrate Research, 2008, 343, 2481-2485.	2.3	52
14	Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydrate Polymers, 2019, 214, 250-258.	10.2	50
15	Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis. International Journal of Biological Macromolecules, 1995, 17, 13-19.	7.5	49
16	Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan. Carbohydrate Polymers, 2015, 116, 229-236.	10.2	48
17	Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-d-glucan (lasiodiplodan). Carbohydrate Polymers, 2013, 92, 1908-1914.	10.2	47
18	On the solution properties of bacterial polysaccharides of the gellan family. Carbohydrate Research, 1992, 231, 31-38.	2.3	45

Joana Lea Meira Silveira

#	Article	IF	CITATIONS
19	Role of galactomannan composition on the binary gel formation with xanthan. International Journal of Biological Macromolecules, 1999, 26, 225-231.	7.5	45
20	Conformation of galactomannan: experimental and modelling approaches. Food Hydrocolloids, 1999, 13, 263-266.	10.7	43
21	Pharmaceutical use of galactomannans. Quimica Nova, 2011, 34, 292-299.	0.3	38
22	Galactomannans and arabinans from seeds of caesalpiniaceae. Phytochemistry, 1998, 49, 737-743.	2.9	36
23	Structural characterization of the cell wall d-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05. Carbohydrate Research, 2008, 343, 793-798.	2.3	35
24	Pulp and Jam of Gabiroba (Campomanesia xanthocarpa Berg): Characterization and Rheological Properties. Food Chemistry, 2018, 263, 292-299.	8.2	33
25	Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits. International Journal of Biological Macromolecules, 2020, 146, 431-443.	7.5	33
26	Curcumin/xanthan–galactomannan hydrogels: Rheological analysis and biocompatibility. Carbohydrate Polymers, 2013, 93, 279-284.	10.2	32
27	Extraction, purification and structural characterization of a galactoglucomannan from the gabiroba fruit (Campomanesia xanthocarpa Berg), Myrtaceae family. Carbohydrate Polymers, 2017, 174, 887-895.	10.2	28
28	On the viscosity of sodium poly(styrene sulphonate), a flexible polyelectrolyte. Polymer, 1992, 33, 113-116.	3.8	27
29	Structural Studies on Galactomannans From Brazilian Seeds. Journal of Carbohydrate Chemistry, 1993, 12, 753-767.	1.1	27
30	Oligosaccharides derived from the xyloglucan isolated from the seeds of Hymenaea courbaril var. stilbocarpa. International Journal of Biological Macromolecules, 1995, 17, 413-415.	7.5	27
31	Evaluation of xanthan and highly substituted galactomannan from M. scabrella as a sustained release matrix. International Journal of Pharmaceutics, 2004, 271, 197-205.	5.2	26
32	Degalatosylation of xyloglucan: Effect on aggregation and conformation, as determined by time dependent static light scattering, HPSEC–MALLS and viscosimetry. Carbohydrate Polymers, 2011, 83, 1636-1642.	10.2	26
33	Solution properties of D-xylans from corn cobs. European Polymer Journal, 2000, 36, 783-787.	5.4	23
34	Interfacial Properties of Methylcelluloses: The Influence of Molar Mass. Polymers, 2014, 6, 2961-2973.	4.5	23
35	Chemical, thermal and rheological properties and stability of sapucaia (Lecythis pisonis) nut oils. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2105-2121.	3.6	22
36	Water-soluble galactomannans from seeds of Mimosaceae spp Bioresource Technology, 1999, 68, 55-62.	9.6	21

#	Article	IF	CITATIONS
37	Rheological behavior of a pectic fraction from the pulp of cupuassu (Theobroma grandiflorum). Carbohydrate Polymers, 2010, 79, 312-317.	10.2	21
38	Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydrate Polymers, 2019, 224, 115140.	10.2	21
39	Use of avocado phospholipids as emulsifier. LWT - Food Science and Technology, 2017, 79, 42-51.	5.2	20
40	Effect of pH and protein particle shape on the stability of amylopectin–xyloglucan water-in-water emulsions. Food Hydrocolloids, 2020, 104, 105769.	10.7	20
41	Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated (1→3)(1→6)-β-D-Glucan. Journal of Microbiology and Biotechnology, 2011, 21, 1036-1042.	2.1	19
42	Physical properties of xanthan, galactomannan and their mixtures in aqueous solutions. Macromolecular Symposia, 1999, 140, 115-124.	0.7	18
43	Rheological behavior of gel of xanthan with seed galactomannan: Effect of hydroalcoholic–ascorbic acid. Materials Science and Engineering C, 2009, 29, 559-563.	7.3	18
44	Evaluation of the chemical characteristics and rheological behavior of pitaya (<i>Hylocereus) Tj ETQqO 0 0 rgBT /</i>	Overlock 1 0.4	0 Tf 50 462
45	Influence of the extraction time on macromolecular parameters of galactomannans. Carbohydrate Polymers, 2015, 116, 200-206.	10.2	18
46	Galactomannan from the seeds of Mimosa scabrella: a scale-up process. International Journal of Biological Macromolecules, 1997, 21, 137-140.	7.5	17
47	Real-time monitoring of enzymatic hydrolysis of galactomannans, Biopolymers, 2001, 59, 226-242	24	17

47	Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolymers, 2001, 59, 226-242.	2.4	17
48	Chemical and rheological properties of a starch-rich fraction from the pulp of the fruit cupuassu (Theobroma grandiflorum). Materials Science and Engineering C, 2009, 29, 651-656.	7.3	17
49	Analysis of the Biotechnological Potential of aLentinus crinitusIsolate in the Light of Its Secretome. Journal of Proteome Research, 2016, 15, 4557-4568.	3.7	16
50	Rheological properties of thermally xyloglucan gel from the seeds of Hymenaea courbaril. Materials Science and Engineering C, 2009, 29, 410-414.	7.3	15
51	Thermal and Rheological Properties of a Family of Botryosphaerans Produced by Botryosphaeria rhodina MAMB-05. Molecules, 2011, 16, 7488-7501.	3.8	15
52	Influence of Molar Mass and Concentration on the Thermogelation of Methylcelluloses. International Journal of Polymer Analysis and Characterization, 2015, 20, 110-118.	1.9	15
53	Nanoemulsion as a carrier to improve the topical anti-inflammatory activity of stem bark extract of Rapanea ferruginea . International Journal of Nanomedicine, 2016, Volume 11, 4495-4507.	6.7	15
54	Interaction between the galactomannan from Mimosa scabrella and milk proteins. Food	10.7	14

Hydrocolloids, 2002, 16, 403-417.

#	Article	IF	CITATIONS
55	Rheological Characterization of a Xanthan–Galactomannan Hydrogel Loaded with Lipophilic Substances. Journal of Pharmaceutical Sciences, 2012, 101, 2457-2467.	3.3	14
56	Interaction of Quillaja bark saponin and bovine serum albumin: Effect on secondary and tertiary structure, gelation and in vitro digestibility of the protein. LWT - Food Science and Technology, 2020, 121, 108970.	5.2	14
57	Modulation of Epidermal Growth Factor Release by Biopolymer-Coated Liposomes. Journal of Pharmaceutical Sciences, 2020, 109, 2294-2301.	3.3	14
58	Brazilian Amazon white yam (Dioscorea sp.) starch. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2075-2088.	3.6	13
59	Caracterização quÃmica dos géis produzidos pelas bactérias diazotróficas Rhizobium tropici e Mesorhizobium sp Quimica Nova, 2012, 35, 705-708.	0.3	13
60	Propriedades reológicas e efeito da adição de sal na viscosidade de exopolissacarÃdeos produzidos por bactérias do gênero Rhizobium. Quimica Nova, 2010, 33, 895-899.	0.3	11
61	Development and Validation of a RP-HPLC–PDA Method for Determination of Curcuminoids in Microemulsions. Chromatographia, 2013, 76, 1041-1048.	1.3	11
62	The Impact of Polyoxyethylene Sorbitan Surfactants in the Microstructure and Rheological Behaviour of Emulsions Made With Melted Fat From Cupuassu (<i>Theobroma grandiflorum</i>). Journal of Surfactants and Detergents, 2016, 19, 725-738.	2.1	11
63	Effect of antinutrients on heat-set gelation of soy, pea, and rice protein isolates. Journal of Food Science and Technology, 2020, 57, 4201-4210.	2.8	10
64	Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocolloids, 2021, 121, 106845.	10.7	10
65	Polysaccharides from the seeds of Senna multijuga. International Journal of Biological Macromolecules, 1995, 17, 409-412.	7.5	9
66	Nicotine Induces Sensitization of Turning Behavior in 6-Hydroxydopamine Lesioned Rats. Neurotoxicity Research, 2009, 15, 359-366.	2.7	8
67	Differential performance of marubakaido apple rootstock shoots grown in culture media containing different agar brands: dynamic rheological analysis. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 356-363.	2.1	7
68	Spherical aggregates obtained from N-carboxymethylation and acetylation of chitosan. Colloid and Polymer Science, 2008, 286, 1387-1394.	2.1	7
69	The addition of carboxymethylcellulose in caseinomacropeptide acid gels: Rheological, optical and microstructural characteristics. Food Hydrocolloids, 2015, 49, 11-17.	10.7	7
70	Isolation, NMR characterization and bioactivity of a (4-O-methyl-α-D-glucurono)-β-D-xylan from Campomanesia xanthocarpa Berg fruits. International Journal of Biological Macromolecules, 2022, 207, 893-904.	7.5	7
71	Structural aspects of the exudate from the fruit of Chorisia speciosa St. Hil. International Journal of Biological Macromolecules, 1999, 26, 219-224.	7.5	6
72	Real-time monitoring of the change in stiffness of single-strand xanthan gum induced by NaCl. Food Hydrocolloids, 2015, 44, 191-197.	10.7	6

#	Article	IF	CITATIONS
73	Apparent Viscosity of a Skim Milk Based Dessert: Optimization Through Response Surface Methodology. Food and Nutrition Sciences (Print), 2011, 02, 90-95.	0.4	5
74	Glucogalactan: A polysaccharide isolated from the cell-wall of Verticillium Lecanii. Carbohydrate Polymers, 2013, 98, 1353-1359.	10.2	5
75	Nota CientÃfica: Caracterização reológica dos botriosferanas produzidos pelo Botryosphaeria rhodina MAMB-05 em glucose, sacarose e frutose como fontes de carbono. Brazilian Journal of Food Technology, 2009, 12, 53-59.	0.8	5
76	Time-dependent viscometry study of endoglucanase action on xyloglucan: A real-time approach. International Journal of Biological Macromolecules, 2015, 81, 461-466.	7.5	4
77	A Galactomannan-Driven Enhancement of the In Vitro Multiplication Rate for the Marubakaido Apple Rootstock (Malus prunifolia (Willd.) Borkh) is Not Related to the Degradation of the Exogenous Galactomannan. Applied Biochemistry and Biotechnology, 2012, 166, 197-207.	2.9	3