Cédric Grauffel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Strategy to Design Protease Inhibitors: Application to Enterovirus 71 2A Protease. ACS Bio & Med Chem Au, 2022, 2, 437-449.	3.7	1
2	Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sensors, 2021, 6, 995-1002.	7.8	25
3	Metal Affinity/Selectivity of Monophosphate-Containing Signaling/Lipid Molecules. Journal of Chemical Theory and Computation, 2021, 17, 2444-2456.	5.3	6
4	Trinuclear Calcium Site in the C2 Domain of PKCα/γ Is Prone to Lithium Attack. ACS Omega, 2021, 6, 20657-20666.	3.5	5
5	Calcium in Signaling: Its Specificity and Vulnerabilities toward Biogenic and Abiogenic Metal Ions. Journal of Physical Chemistry B, 2021, 125, 10419-10431.	2.6	6
6	Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors. Chemical Science, 2020, 11, 9904-9909.	7.4	73
7	Factors Coverning the Different Functions of Zn2+-Sites with Identical Ligands in Proteins. Journal of Chemical Information and Modeling, 2019, 59, 3946-3954.	5.4	6
8	Free and Bound Therapeutic Lithium in Brain Signaling. Accounts of Chemical Research, 2019, 52, 2960-2970.	15.6	12
9	Why Cellular Di/Triphosphates Preferably Bind Mg ²⁺ and Not Ca ²⁺ . Journal of Chemical Theory and Computation, 2019, 15, 6992-7003.	5.3	10
10	Factors governing when a metal-bound water is deprotonated in proteins. Physical Chemistry Chemical Physics, 2018, 20, 29625-29636.	2.8	7
11	An efficient protocol for computing the pKa of Zn-bound water. Physical Chemistry Chemical Physics, 2018, 20, 29637-29647.	2.8	10
12	How Pb ²⁺ Binds and Modulates Properties of Ca ²⁺ -Signaling Proteins. Inorganic Chemistry, 2018, 57, 14798-14809.	4.0	35
13	How Native and Non-Native Cations Bind and Modulate the Properties of GTP/ATP. Journal of Chemical Theory and Computation, 2018, 14, 3311-3320.	5.3	9
14	How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent. Scientific Reports, 2017, 7, 42377.	3.3	42
15	A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophysical Journal, 2016, 110, 1367-1378.	0.5	47
16	Factors Governing the Bridging Water Protonation State in Polynuclear Mg ²⁺ Proteins. Journal of Physical Chemistry B, 2016, 120, 1759-1770.	2.6	3
17	Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles. Journal of Biological Chemistry, 2016, 291, 10476-10489.	3.4	46
18	Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Human Molecular Genetics, 2015, 24, 1956-1976.	2.9	97

#	Article	IF	CITATIONS
19	Specific Transient Interactions Between a Bacillus Virulence Factor and Phosphatidylcholine in Membranes. FASEB Journal, 2015, 29, 568.9.	0.5	0
20	Two homologous neutrophil serine proteases bind to POPC vesicles with different affinities: When aromatic amino acids matter. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3191-3202.	2.6	16
21	In Silico Design, Synthesis, and Assays of Specific Substrates for Proteinase 3: Influence of Fluorogenic and Charged Groups. Journal of Medicinal Chemistry, 2014, 57, 1111-1115.	6.4	12
22	Cationâ^ï€ Interactions As Lipid-Specific Anchors for Phosphatidylinositol-Specific Phospholipase C. Journal of the American Chemical Society, 2013, 135, 5740-5750.	13.7	62
23	Specificity and Versatility of Substrate Binding Sites in Four Catalytic Domains of Human N-Terminal Acetyltransferases. PLoS ONE, 2012, 7, e52642.	2.5	5
24	Factors allowing small monovalent Li ⁺ to displace Ca ²⁺ in proteins. Physical Chemistry Chemical Physics, 0, , .	2.8	0