## Daniel Alberto Jacobo-VelÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930646/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 1  | UVA and UVB Radiation as Innovative Tools to Biofortify Horticultural Crops with Nutraceuticals.<br>Horticulturae, 2022, 8, 387.                                                                         | 1.2               | 11                 |
| 2  | Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. Plants, 2022, 11, 1271.                                                         | 1.6               | 5                  |
| 3  | Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum RuÃz &) Tj ETC of Antioxidants. Horticulturae, 2022, 8, 471.                                                        | 2q1 1 0.78<br>1.2 | 34314 rgBT /(<br>2 |
| 4  | Designing Next-Generation Functional Food and Beverages: Combining Nonthermal Processing<br>Technologies and Postharvest Abiotic Stresses. Food Engineering Reviews, 2021, 13, 592-600.                  | 3.1               | 24                 |
| 5  | Physiological role of reactive oxygen species, ethylene, and jasmonic acid on UV light induced<br>phenolic biosynthesis in wounded carrot tissue. Postharvest Biology and Technology, 2021, 172, 111388. | 2.9               | 30                 |
| 6  | Physicochemical properties and sensory acceptability of sugar free dark chocolate formulations added with probiotics. Revista Mexicana De Ingeniera Quimica, 2021, 20, 697-709.                          | 0.2               | 6                  |
| 7  | High Hydrostatic Pressure Processing of Whole Carrots: Effect of Static and Multi-Pulsed Mild<br>Intensity Hydrostatic Pressure Treatments on Bioactive Compounds. Foods, 2021, 10, 219.                 | 1.9               | 8                  |
| 8  | Physicochemical Properties and Sensory Acceptability of a Next-Generation Functional Chocolate Added with Omega-3 Polyunsaturated Fatty Acids and Probiotics. Foods, 2021, 10, 333.                      | 1.9               | 12                 |
| 9  | The complex relationship between metabolic syndrome and sweeteners. Journal of Food Science, 2021, 86, 1511-1531.                                                                                        | 1.5               | 6                  |
| 10 | Fighting the COVID-19 Pandemic through Biofortification: Innovative Approaches to Improve the Immunomodulating Capacity of Foods. ACS Food Science & Technology, 2021, 1, 480-486.                       | 1.3               | 10                 |
| 11 | Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 2021, 41, 100926.                             | 2.0               | 39                 |
| 12 | Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid <i></i> . Oncology Letters, 2021, 22, 742.                                                 | 0.8               | 8                  |
| 13 | Sugar-Free Milk Chocolate as a Carrier of Omega-3 Polyunsaturated Fatty Acids and Probiotics: A Potential Functional Food for the Diabetic Population. Foods, 2021, 10, 1866.                            | 1.9               | 8                  |
| 14 | Chocolate as Carrier to Deliver Bioactive Ingredients: Current Advances and Future Perspectives.<br>Foods, 2021, 10, 2065.                                                                               | 1.9               | 18                 |
| 15 | Effects of Wounding Stress and Storage Temperature on the Accumulation of Chlorogenic Acid<br>Isomers in Potatoes (Solanum tuberosum). Applied Sciences (Switzerland), 2021, 11, 8891.                   | 1.3               | 5                  |
| 16 | Non-Thermal Technologies as Tools to Increase the Content of Health-Promoting Compounds in<br>Whole Fruits and Vegetables While Retaining Quality Attributes. Foods, 2021, 10, 2904.                     | 1.9               | 7                  |
| 17 | Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. Plants, 2021, 10, 2629.                                 | 1.6               | 10                 |
| 18 | Valorization of Carrot Pomace: UVC Induced Accumulation of Antioxidant Phenolic Compounds.<br>Applied Sciences (Switzerland), 2021, 11, 10951.                                                           | 1.3               | 9                  |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemical Genetics Applied to Elucidate the Physiological Role of Stress-Signaling Molecules on the Wound-Induced Accumulation of Glucosinolates in Broccoli. Plants, 2021, 10, 2660.                                                                                          | 1.6 | 5         |
| 20 | Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chemistry, 2020, 307, 125551.                                                                            | 4.2 | 25        |
| 21 | Addressing key features involved in bioactive extractability of vigor prickly pears submitted to high hydrostatic pressurization. Journal of Food Process Engineering, 2020, 43, e13202.                                                                                      | 1.5 | 10        |
| 22 | Controlled Abiotic Stresses Revisited: From Homeostasis through Hormesis to Extreme Stresses and the Impact on Nutraceuticals and Quality during Pre- and Postharvest Applications in Horticultural Crops. Journal of Agricultural and Food Chemistry, 2020, 68, 11877-11879. | 2.4 | 57        |
| 23 | Bioactive Phenolics and Polyphenols: Current Advances and Future Trends. International Journal of Molecular Sciences, 2020, 21, 6142.                                                                                                                                         | 1.8 | 6         |
| 24 | Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the<br>Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food and Bioprocess Technology, 2020,<br>13, 1717-1727.                                                             | 2.6 | 14        |
| 25 | UVCÂlight modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 2020, 10, 21972.                                                                                                    | 1.6 | 29        |
| 26 | Sanitizing after freshâ€cutting carrots reduces the woundâ€induced accumulation of phenolic<br>antioxidants compared to sanitizing before freshâ€cutting. Journal of the Science of Food and<br>Agriculture, 2020, 100, 4995-4998.                                            | 1.7 | 13        |
| 27 | Wounding and UVB light synergistically induce the postharvest biosynthesis of indicaxanthin and betanin in red prickly pears. Postharvest Biology and Technology, 2020, 167, 111247.                                                                                          | 2.9 | 10        |
| 28 | High hydrostatic pressure stabilized micronutrients and shifted dietary fibers, from insoluble to soluble, producing a low-glycemic index mango pulp. CYTA - Journal of Food, 2020, 18, 203-215.                                                                              | 0.9 | 14        |
| 29 | Effects of carrot puree with enhanced levels of chlorogenic acid on rat cognitive abilities and neural development. CYTA - Journal of Food, 2020, 18, 68-75.                                                                                                                  | 0.9 | 8         |
| 30 | Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon<br>Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 3108.                                                                                                 | 1.8 | 20        |
| 31 | Anticancer potential of dihydrocaffeic acid: a chlorogenic acid metabolite. CYTA - Journal of Food, 2020, 18, 245-248.                                                                                                                                                        | 0.9 | 28        |
| 32 | Association of Dietary Fiber to Food Components. Food Engineering Series, 2020, , 45-70.                                                                                                                                                                                      | 0.3 | 4         |
| 33 | Chitosan enhances the production of antioxidant phenolic compounds in carrot through a synergistic effect with wounding stress. Revista Mexicana De Ingeniera Quimica, 2020, 19, 375-384.                                                                                     | 0.2 | Ο         |
| 34 | Combined application of wounding stress and extrusion as an innovative tool to obtain carrot powders with modified functional properties. CYTA - Journal of Food, 2019, 17, 613-621.                                                                                          | 0.9 | 3         |
| 35 | Postharvest Wounding Stress in Horticultural Crops as a Tool for Designing Novel Functional Foods<br>and Beverages with Enhanced Nutraceutical Content: Carrot Juice as a Case Study. Journal of Food<br>Science, 2019, 84, 1151-1161.                                        | 1.5 | 30        |
| 36 | A practical guide for designing effective nutraceutical combinations in the form of foods, beverages,<br>and dietary supplements against chronic degenerative diseases. Trends in Food Science and<br>Technology, 2019, 88, 179-193.                                          | 7.8 | 41        |

| #  | Article                                                                                                                                                                                                                                               | IF               | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 37 | Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic<br>Acid in Red Prickly Pears (Opuntia ficus-indica cv. Rojo Vigor). International Journal of Molecular<br>Sciences, 2019, 20, 5327.                 | 1.8              | 30           |
| 38 | Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrasonics Sonochemistry, 2019, 50, 289-301.                                                                     | 3.8              | 33           |
| 39 | Role of reactive oxygen species and ethylene as signaling molecules for the wound-induced<br>biosynthesis of glucosinolates in broccoli (Brassica oleracea L. †Italica'). Acta Horticulturae, 2018, ,<br>909-914.                                     | 0.1              | 2            |
| 40 | An alternative use of horticultural crops: stressed plants as biofactories of bioactive glucosinolate and phenolic compounds. Acta Horticulturae, 2018, , 947-952.                                                                                    | 0.1              | 4            |
| 41 | Effects of UVB Light, Wounding Stress, and Storage Time on the Accumulation of Betalains, Phenolic<br>Compounds, and Ascorbic Acid in Red Prickly Pear (Opuntia ficus-indica cv. Rojo Vigor). Food and<br>Bioprocess Technology, 2018, 11, 2265-2274. | 2.6              | 25           |
| 42 | Genes differentially expressed in broccoli as an early and late response to wounding stress.<br>Postharvest Biology and Technology, 2018, 145, 172-182.                                                                                               | 2.9              | 36           |
| 43 | Using a Functional Carrot Powder Ingredient to Produce Sausages with High Levels of Nutraceuticals. Journal of Food Science, 2018, 83, 2351-2361.                                                                                                     | 1.5              | 23           |
| 44 | Phytochemical characterization of sesame bran: an unexploited by-product rich in bioactive compounds. CYTA - Journal of Food, 2018, 16, 814-821.                                                                                                      | 0.9              | 9            |
| 45 | Classification of Phenolic Compounds. , 2018, , 3-20.                                                                                                                                                                                                 |                  | 6            |
| 46 | THE APPLICATION OF CHEMICAL ELICITORS IMPROVES THE FLAVONOID AND SAPONIN PROFILES OF BLACK BEANS AFTER SOAKING. Revista Mexicana De Ingeniera Quimica, 2018, 17, 123-130.                                                                             | 0.2              | 3            |
| 47 | Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer) Tj ETQq1 1 0.78                                                                                                                                       | 4314 rgBT<br>4.2 | /Oygrlock 10 |
| 48 | Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the<br>Availability and Pressure-Temperature Stability of Phytochemicals. Food Engineering Reviews, 2017, 9,<br>314-334.                                   | 3.1              | 37           |
| 49 | Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science and Technology, 2017, 60, 80-87.                                                                 | 7.8              | 51           |
| 50 | UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in<br>Broccoli Sprouts. Molecules, 2017, 22, 1065.                                                                                                 | 1.7              | 79           |
| 51 | UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of<br>Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. International Journal<br>of Molecular Sciences, 2017, 18, 2330.                | 1.8              | 114          |
| 52 | Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against<br>Metabolic Syndrome. Molecules, 2017, 22, 358.                                                                                                    | 1.7              | 439          |
| 53 | Stability of Bioactive Compounds in Broccoli as Affected by Cutting Styles and Storage Time.<br>Molecules, 2017, 22, 636.                                                                                                                             | 1.7              | 52           |
| 54 | Recent Advances in Plant Phenolics. Molecules, 2017, 22, 1249.                                                                                                                                                                                        | 1.7              | 9            |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot<br>through a Synergistic Effect with Wounding. Molecules, 2017, 22, 668.                                                        | 1.7 | 83        |
| 56 | Opportunities and Challenges of Ultrasound for Food Processing. , 2017, , 457-497.                                                                                                                                            |     | 11        |
| 57 | Aqueous Two-Phase System Strategies for the Recovery and Partial Purification of Bioactive Low<br>Molecular Weight Compounds. Food Engineering Series, 2017, , 79-96.                                                         | 0.3 | 2         |
| 58 | Primary recovery of bioactive compounds from stressed carrot tissue using aqueous twoâ€phase<br>systems strategies. Journal of Chemical Technology and Biotechnology, 2016, 91, 144-154.                                      | 1.6 | 40        |
| 59 | Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and<br>Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones. Frontiers<br>in Plant Science, 2016, 7, 45. | 1.7 | 76        |
| 60 | Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biology and Technology, 2016, 119, 18-26.                                    | 2.9 | 57        |
| 61 | Application of wounding stress to produce a nutraceutical-rich carrot powder ingredient and its incorporation to nixtamalized corn flour tortillas. Journal of Functional Foods, 2016, 27, 655-666.                           | 1.6 | 32        |
| 62 | Characterization of concentrated agave saps and storage effects on browning, antioxidant capacity and amino acid content. Journal of Food Composition and Analysis, 2016, 45, 113-120.                                        | 1.9 | 26        |
| 63 | Date Syrup. , 2016, , 241-254.                                                                                                                                                                                                |     | 2         |
| 64 | Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 2015, 6, 837.                                         | 1.7 | 112       |
| 65 | Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Scientific Reports, 2015, 5, 8608.                                                                | 1.6 | 182       |
| 66 | Effect of industrial freezing on the stability of chemopreventive compounds in broccoli.<br>International Journal of Food Sciences and Nutrition, 2015, 66, 282-288.                                                          | 1.3 | 24        |
| 67 | Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango<br>(Mangifera indica L. cv Keitt). Postharvest Biology and Technology, 2015, 103, 45-54.                                         | 2.9 | 68        |
| 68 | Effects of different defrosting methods on the stability of bioactive compounds and consumer acceptability of frozen broccoli. CYTA - Journal of Food, 2015, 13, 312-320.                                                     | 0.9 | 12        |
| 69 | Effect of Germination and UV  Radiation on the Accumulation of Flavonoids and Saponins in Black<br>Bean Seed Coats. Cereal Chemistry, 2014, 91, 276-279.                                                                      | 1.1 | 19        |
| 70 | Kale: An excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CYTA - Journal of<br>Food, 2014, 12, 298-303.                                                                                               | 0.9 | 33        |
| 71 | Effect of Exogenous Amylolytic Enzymes on the Accumulation of Chlorogenic Acid Isomers in<br>Wounded Potato Tubers. Journal of Agricultural and Food Chemistry, 2014, 62, 7671-7675.                                          | 2.4 | 34        |
| 72 | Plants as biofactories: Stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time. Industrial Crops and Products, 2014, 62, 61-66.                            | 2.5 | 66        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Role of Nitric Oxide in Plant Development. , 2014, , 247-256.                                                                                                                                                                                   |     | 8         |
| 74 | Hypobaria and hypoxia affects phytochemical production, gas exchange, and growth of lettuce.<br>Photosynthetica, 2013, 51, 465-473.                                                                                                             | 0.9 | 12        |
| 75 | The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 2013, 5, 5990.                                                                                                | 1.3 | 467       |
| 76 | Cambios bioquÃmicos durante el almacenamiento de puré de aguacate adicionado con antioxidantes<br>naturales y procesado con alta presión hidrostática. CYTA - Journal of Food, 2013, 11, 379-391.                                               | 0.9 | 10        |
| 77 | High Hydrostatic Pressure Processing as a Strategy To Increase Carotenoid Contents of Tropical Fruits. ACS Symposium Series, 2013, , 29-42.                                                                                                     | 0.5 | 7         |
| 78 | PRODUCTION OF NUTRACEUTICALS IN CARROT BAGASSE USING ABIOTIC STRESSES. Acta Horticulturae, 2013, , 1475-1479.                                                                                                                                   | 0.1 | 3         |
| 79 | Plants as Biofactories: Glyphosate-Induced Production of Shikimic Acid and Phenolic Antioxidants in<br>Wounded Carrot Tissue. Journal of Agricultural and Food Chemistry, 2012, 60, 11378-11386.                                                | 2.4 | 61        |
| 80 | An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic<br>Compounds. Agriculture (Switzerland), 2012, 2, 259-271.                                                                                     | 1.4 | 92        |
| 81 | Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innovative Food Science and Emerging Technologies, 2012, 16, 121-128.                                                                   | 2.7 | 85        |
| 82 | Plants as Biofactories: Physiological Role of Reactive Oxygen Species on the Accumulation of<br>Phenolic Antioxidants in Carrot Tissue under Wounding and Hyperoxia Stress. Journal of<br>Agricultural and Food Chemistry, 2011, 59, 6583-6593. | 2.4 | 205       |
| 83 | Sensory Shelfâ€Life Limiting Factor of High Hydrostatic Pressure Processed Avocado Paste. Journal of<br>Food Science, 2011, 76, S388-95.                                                                                                        | 1.5 | 28        |
| 84 | Biochemical Changes during the Storage of High Hydrostatic Pressure Processed Avocado Paste.<br>Journal of Food Science, 2010, 75, S264-70.                                                                                                     | 1.5 | 69        |
| 85 | Survival Analysis Applied to the Sensory Shelfâ€Life Dating of High Hydrostatic Pressure Processed<br>Avocado and Mango Pulps. Journal of Food Science, 2010, 75, S286-91.                                                                      | 1.5 | 19        |
| 86 | Partial purification and enzymatic characterization of avocado (Persea americana Mill, cv. Hass)<br>lipoxygenase. Food Research International, 2010, 43, 1079-1085.                                                                             | 2.9 | 23        |
| 87 | Correlations of Antioxidant Activity against Phenolic Content Revisited: A New Approach in Data<br>Analysis for Food and Medicinal Plants. Journal of Food Science, 2009, 74, R107-13.                                                          | 1.5 | 177       |
| 88 | Definition of Biofortification Revisited. ACS Food Science & Technology, 0, , .                                                                                                                                                                 | 1.3 | 9         |