Chandi C Malakar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930544/publications.pdf

Version: 2024-02-01

70 papers

1,337 citations

430874 18 h-index 395702 33 g-index

87 all docs

87 docs citations

87 times ranked

1309 citing authors

#	Article	IF	CITATIONS
1	Influence of Bases and Ligands on the Outcome of the Cu(I)-Catalyzed Oxidative Homocoupling of Terminal Alkynes to 1,4-Disubstituted 1,3-Diynes Using Oxygen as an Oxidant. Journal of Organic Chemistry, 2009, 74, 5648-5651.	3.2	140
2	Double Câ^'H Activation: The Palladium-Catalyzed Direct C-Arylation of Xanthines with Arenes. Organic Letters, 2011, 13, 1378-1381.	4.6	100
3	Cu(I)-Catalyzed Domino Reactions: Efficient and Selective Synthesis of 4 <i>H</i> -Chromenes and Naphthalenes. Organic Letters, 2011, 13, 1972-1975.	4.6	99
4	Copperâ€Catalyzed Synthesis of Quinazolines in Water Starting from <i>o</i> à€Bromobenzylbromides and Benzamidines. Chemistry - A European Journal, 2012, 18, 8882-8885.	3.3	85
5	Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Advanced Synthesis and Catalysis, 2020, 362, 4896-4990.	4.3	61
6	Cu-Catalyzed Reaction of 1,2-Dihalobenzenes with 1,3-Cyclohexanediones for the Synthesis of 3,4-Dihydrodibenzo $[\langle i \rangle b,d \langle i \rangle]$ furan-1(2 $\langle i \rangle H \langle i \rangle$)-ones. Journal of Organic Chemistry, 2012, 77, 7793-7803.	3.2	51
7	Metal–free Decarboxylative Amination: An Alternative Approach Towards Regioselective Synthesis of βâ€Carboline <i>N</i> à6€fused Imidazoles. Advanced Synthesis and Catalysis, 2017, 359, 1213-1226.	4.3	38
8	In(OTf) ₃ assisted synthesis of \hat{l}^2 -carboline C-3 tethered imidazo[1,2-a]azine derivatives. New Journal of Chemistry, 2017, 41, 1082-1093.	2.8	34
9	Natural product inspired design and synthesis of \hat{l}^2 -carboline and \hat{l}^3 -lactone based molecular hybrids. Organic and Biomolecular Chemistry, 2016, 14, 8154-8166.	2.8	31
10	2,3-Dihalo-1-propenes as Building Blocks in Cu(I)-Catalyzed Domino Reactions: Efficient and Selective Synthesis of Furans. Organic Letters, 2014, 16, 4862-4865.	4.6	29
11	Recent Advances in Pyridineâ€Based Organocatalysis and its Application towards Valuable Chemical Transformations. ChemistrySelect, 2020, 5, 8745-8758.	1.5	28
12	Copperâ€Catalyzed Siteâ€Selective Oxidative Câ^'C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Advanced Synthesis and Catalysis, 2019, 361, 135-145.	4.3	26
13	Copper(I)-Catalyzed Intramolecular O-Arylation for the Synthesis of 2,3,4,9-Tetrahydro-1 <i>H</i> -xanthen-1-ones with Low Loads of CuCl. Journal of Organic Chemistry, 2012, 77, 10194-10210.	3.2	25
14	Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles. Tetrahedron Letters, 2019, 60, 223-229.	1.4	25
15	Microwave-Assisted Molybdenum-Catalyzed Reductive Cyclization of o-Nitrobenzylidene Amines to 2-Aryl-2H-indazoles. Synlett, 2013, 24, 1573-1577.	1.8	24
16	Reaction of 1-Nitroso-2-naphthols with $\hat{l}\pm$ -Functionalized Ketones and Related Compounds: The Unexpected Formation of Decarbonylated 2-Substituted Naphtho[1,2- <i>d</i>][1,3]oxazoles. Journal of Organic Chemistry, 2013, 78, 154-166.	3.2	23
17	Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European Journal of Organic Chemistry, 2018, 2018, 4628-4638.	2.4	23
18	Pd-Catalyzed Decarboxylation and Dual C(sp ³)â€"H Functionalization Protocols for the Synthesis of 2,4-Diarylpyridines. Journal of Organic Chemistry, 2019, 84, 5005-5020.	3.2	21

#	Article	IF	CITATIONS
19	In(OTf) ₃ â€HBF ₄ Assisted Multicomponent Approach for Oneâ€Pot Synthesis of Pyrazolopyridinone Fused Imidazopyridines. ChemistrySelect, 2016, 1, 4696-4703.	1.5	20
20	Reagent-Controlled Divergent Synthesis of 2-Amino-1,3-Benzoxazines and 2-Amino-1,3-Benzothiazines. Journal of Organic Chemistry, 2020, 85, 380-396.	3.2	20
21	Metalâ€Free Synthesis of Chlorinated βâ€Amino Ketones <i>via</i> an Unexpected Reaction of Imines with Arylacetylenes in 1,1,1,3,3,3â€Hexafluoroâ€2â€propanol. Advanced Synthesis and Catalysis, 2016, 358, 41-49.	4.3	19
22	An Expeditious Approach for the Synthesis of β arbolineâ^Pyrazoleâ€Based Molecular Hybrids. Asian Journal of Organic Chemistry, 2018, 7, 383-394.	2.7	18
23	Overview on Recent Approaches towards Synthesis of 2â€Ketoâ€annulated Oxazole Derivatives. Journal of Heterocyclic Chemistry, 2019, 56, 2730-2743.	2.6	18
24	Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C–N Source. European Journal of Organic Chemistry, 2020, 2020, 803-814.	2.4	18
25	Transition-metal-free variant of Glaser- and Cadiot-Chodkiewicz-type Coupling: Benign access to diverse 1,3-diynes and related molecules. Tetrahedron Letters, 2020, 61, 151775.	1.4	17
26	An Indium(III)â€Catalyzed Synthesis of 4,4â€Dichloroâ€1â€arylâ€ <i>N</i> à€alkylâ€1â€ynâ€3â€amines <i>via</i> Intermolecular C(<i>sp</i> ²)C(<i>sp</i>) Bond Formation. Advanced Synthesis and Catalysis, 2012, 354, 3461-3467.	an 4.3	16
27	The facile and efficient organocatalytic platform for accessing 1,2,4-selenadiazoles and thiadiazoles under aerobic conditions. Tetrahedron Letters, 2018, 59, 904-908.	1.4	16
28	HFIP-mediated strategy towards \hat{l}^2 -oxo amides and subsequent Friedel-Craft type cyclization to $2\hat{a}$ equinolinones using recyclable catalyst. Tetrahedron Letters, 2020, 61, 152535.	1.4	16
29	Cu(i)-catalyzed annulation for the synthesis of substituted naphthalenes using o-bromobenzaldehydes and \hat{l}^2 -ketoesters as substrates. Organic and Biomolecular Chemistry, 2012, 10, 3899.	2.8	15
30	Base-Promoted Domino Reaction of 5-Substituted 2-Nitrosophenols with Bromomethyl Aryl Ketones: A Transition-Metal-Free Approach to 2-Aroylbenzoxazoles. Journal of Organic Chemistry, 2015, 80, 10829-10837.	3.2	14
31	Indiumâ€Mediated Domino Allylationâ€Lactonisation Approach: Diastereoselective Synthesis of βâ€Carboline Câ€3 Tethered αâ€Methylene γâ€Butyrolactones. ChemistrySelect, 2018, 3, 4859-4864.	1.5	14
32	Pharmaceutical potential of phorbol esters from <i>Jatropha curcas</i> oil. Natural Product Research, 2013, 27, 1459-1462.	1.8	13
33	Immobilized Catalysts for Iridium atalyzed Allylic Amination: Rate Enhancement by Immobilization. Chemistry - A European Journal, 2015, 21, 7127-7134.	3.3	13
34	Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Letters, 2020, 61, 151588.	1.4	13
35	Metal-free 1,3-dipolar cycloaddition approach towards the regioselective synthesis of \hat{l}^2 -carboline and isoxazole based molecular hybrids. RSC Advances, 2016, 6, 88066-88076.	3.6	12
36	Lewis Acid Mediated Vinylâ€Transfer Reaction of Alkynes to <i>N</i> â€Alkylimines by Using the <i>N</i> â€Alkyl Residue as a Sacrificial Hydrogen Donor. Chemistry - A European Journal, 2013, 19, 14263-14270.	3.3	11

#	Article	IF	Citations
37	Indium(iii)-catalyzed tandem synthesis of 2-alkynyl-3,3-dichloropyrrolidines and their conversion to 3-chloropyrroles. RSC Advances, 2015, 5, 10139-10151.	3.6	11
38	An organocatalytic C–C bond cleavage approach: a metal-free and peroxide-free facile method for the synthesis of amide derivatives. New Journal of Chemistry, 2020, 44, 20940-20944.	2.8	11
39	A metal- and base-free domino protocol for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines and related scaffolds. Organic and Biomolecular Chemistry, 2019, 17, 2516-2528.	2.8	10
40	Copperâ€Catalyzed [2+2+1+1] Annulation for the Regioselective Synthesis of 2,6â€Diarylpyridines <i>via</i> Clâ€Insertion and Subsequent Cyclization. ChemistrySelect, 2020, 5, 10144-10148.	1.5	10
41	Structural Diversity Attributed by Aza-Diels-Alder Reaction in Synthesis of Diverse Quinoline Scaffolds. Current Organic Chemistry, 2019, 23, 920-958.	1.6	10
42	Transition-Metal-Free Transfer Hydrogenative Cascade Reaction of Nitroarenes with Amines/Alcohols: Redox-Economical Access to Benzimidazoles. Journal of Organic Chemistry, 2021, 86, 14597-14607.	3.2	10
43	Iridiumâ€Catalyzed Asymmetric AllylÂic Substitutions with Bulky ÂAmines/Oxidative Double Bond Cleavage – Entry into the Reetz Synthesis of Amino Alcohols. European Journal of Organic Chemistry, 2016, 2016, 493-501.	2.4	9
44	Pd-catalyzed domino reactions of nitroaromatics: A surrogate access towards the saturated N-heterocycles. Tetrahedron Letters, 2016, 57, 5695-5699.	1.4	9
45	A Tandem Approach towards Diastereoselective Synthesis of Quinoline Câ€3 Tethered γâ€Lactones. ChemistrySelect, 2018, 3, 399-404.	1.5	9
46	Decarboxylative cyclization of amino acids towards the Regioselective synthesis of 2,4-diarylpyridines via relay Fe(III)/In(III)-catalysis. Tetrahedron Letters, 2020, 61, 151495.	1.4	9
47	Facile Protocols towards C2-Arylated Benzoxazoles using Fe(III)-Catalyzed C(sp 2-H) Functionalization and Metal-Free Domino Approach. Synlett, 2018, 29, 1469-1478.	1.8	7
48	A Facile Câ€H Insertion Strategy using Combination of HFIP and Isocyanides: Metalâ€Free Access to Azole Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 1793-1797.	2.7	7
49	Unexpected Lewis Acid Mediated Reactions of 1-Arylbut-3-en-1-ols with Trimethyl Orthoformate - A New Synthesis of Homoallyl Ethers and Chlorides. Synlett, 2008, 2008, 903-907.	1.8	6
50	Synthesis of Functionalized Naphthalenes by Copper(I)â€Catalyzed Annulation between 3â€(2â€HalobenzyI)pentaneâ€2,4â€diones and βâ€Keto Esters, Malonates and Cyanoacetates. Advanced Synth and Catalysis, 2013, 355, 2400-2416.	es is 3	6
51	Mo(VI)-catalyzed Synthesis of 2-Aryl-2 <i>H</i> -indazoles Using Pinacol Mediated Deoxygenation of Nitroaromatics. Chemistry Letters, 2019, 48, 1258-1261.	1.3	6
52	Aminoâ€Acidâ€Mediated Aerobic Oxidation of Organoborons for the Synthesis of Phenolic Derivatives Using Single Electron Transfer. ChemistrySelect, 2020, 5, 2419-2423.	1.5	6
53	P(III)â∈Mediated Cascade Câ∈N/Câ∈S Bond Formation: A Protocol towards the Synthesis of <i>N</i> , <i>S</i> ê∈Heterocycles and Spiro Compounds. Advanced Synthesis and Catalysis, 2021, 363, 431-445.	4.3	6
54	Klâ€assisted Sulfur Activation/Insertion/Denitration Strategy towards Dual Câ^'S Bond Formation for Oneâ€pot Synthesis of βâ€Carbolineâ€tethered 2â€Acylbenzothiophenes. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6

#	Article	IF	CITATIONS
55	Recent Advances in Synthesis and Medicinal Evaluation of 1,2â€Benzothiazine Analogues. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6
56	MoO2Cl2(dmf)2-Catalyzed Domino Reactions of i‰-Nitro Alkenes to 3,4-Dihydro-2H-1,4-benzothiazines and Other Heterocycles. Synlett, 2010, 2010, 1766-1770.	1.8	4
57	Novel Domino Routes for the Synthesis of Nâ∈Heterocycles via Reductive Cyclization of βâ∈(<i>N</i> â∈2â∈Nitroaryl)â∈α,βâ∈unsaturated Ketones. ChemistrySelect, 2016, 1, 5784-5788.	1.5	4
58	Efficient Syntheses of Diverse N-Heterocycles: The Molybdenum(VI)-Catalyzed Reductive Cyclization of Nitroarenes using Pinacol as a DeoxygenatingÂ-Agent. SynOpen, 2018, 02, 0138-0144.	1.7	4
59	Transitionâ€Metalâ€Free Câ€6 Bond Forming Strategy towards Synthesis of Highly Diverse Pyrazole Tethered Benzothiazoles: Investigation of their Photophysical Properties. Asian Journal of Organic Chemistry, 2020, 9, 1857-1868.	2.7	4
60	C _{sp} â€"C _{sp} bond cleavage and fragment coupling: a transition metal-free "extrusion and recombination―approach towards synthesis of 1,2-diketones. Organic Chemistry Frontiers, 2021, 8, 5389-5396.	4.5	4
61	<scp>Azaâ€Michael</scp> addition of 1, <scp>2â€diazoles</scp> to structurally diverse enones: Efficient methods toward <scp>βâ€amino</scp> ketones. Journal of Heterocyclic Chemistry, 2021, 58, 1029-1033.	2.6	4
62	Docking-based evaluation against Human Tankyrase-1 and Tankyrase-2 enzyme. Materials Today: Proceedings, 2022, 57, 300-306.	1.8	4
63	Overview of Hydroxychloroquine and Remdesivir on severe acute respiratory syndrome coronavirus 2 (SARSâ€CoVâ€2). Journal of Heterocyclic Chemistry, 2023, 60, 165-182.	2.6	4
64	Organocatalytic Decarboxylation and Dual C(sp ³)â^'H Bond Functionalization Toward Facile Access to Divergent 2,6â€Diarylpyridines. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
65	Synthesis of Pyrazolo[4,3-c]quinolines and the C-C Bond Cleavage during Reductive Cyclization. Heterocycles, 2021, 102, 705.	0.7	1
66	C-H Functionalization and C-N Bond Formation Approaches under Catalytic Conditions for the Synthesis of $\hat{1}$ ±-Ketoamides and 2,4-Disubstituted-1,3,5-triazines. Asian Journal of Chemistry, 2022, 34, 1841-1847.	0.3	1
67	Goldâ€Catalyzed Facile Protocol towards the Efficient Access of Azetidinyl Esters, βâ€Amino Esters and Î'â€Amino Esters using Simple Substrates. Asian Journal of Organic Chemistry, 2019, 8, 1947-1947.	2.7	O
68	Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. Heterocycles, 2021, 102, 465.	0.7	0
69	Cu(II)â€Catalysed Azideâ€Alkyne Cycloaddition Reaction towards Synthesis of βâ€Carboline C1â€Tethered 1,2,3â€Triazole Derivatives. ChemistrySelect, 2021, 6, 4005-4010.	1.5	0
70	Catalytic Iodine and Morpholine as Reagent Combination for Hydration of Alkynes via Markovnikov Addition. Asian Journal of Chemistry, 2022, 34, 1592-1596.	0.3	O