Ho Sung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930415/publications.pdf Version: 2024-02-01

	126858	149623
4,121	33	56
citations	h-index	g-index
145	145	5309
docs citations	times ranked	citing authors
	citations 145	citations h-index

HO SUNC KIM

#	Article	IF	CITATIONS
1	Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean Journal of Radiology, 2019, 20, 1124.	1.5	225
2	Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. European Radiology, 2020, 30, 523-536.	2.3	178
3	Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent–enhanced CT Images in the Liver. Radiology, 2018, 289, 688-697.	3.6	153
4	Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology, 2019, 21, 404-414.	0.6	153
5	Percent Change of Perfusion Skewness and Kurtosis: A Potential Imaging Biomarker for Early Treatment Response in Patients with Newly Diagnosed Glioblastomas. Radiology, 2012, 264, 834-843.	3.6	142
6	Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro-Oncology, 2018, 20, 1251-1261.	0.6	103
7	Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiologica, 2013, 54, 448-454.	0.5	101
8	Which Combination of MR Imaging Modalities Is Best for Predicting Recurrent Glioblastoma? Study of Diagnostic Accuracy and Reproducibility. Radiology, 2014, 273, 831-843.	3.6	98
9	Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. European Radiology, 2020, 30, 2142-2151.	2.3	93
10	Pre- and Posttreatment Glioma: Comparison of Amide Proton Transfer Imaging with MR Spectroscopy for Biomarkers of Tumor Proliferation. Radiology, 2016, 278, 514-523.	3.6	87
11	Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis. European Radiology, 2019, 29, 745-758.	2.3	87
12	2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro-Oncology, 2018, 20, 1573-1583.	0.6	85
13	A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer, 2020, 20, 29.	1.1	82
14	Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging. Radiology, 2013, 269, 561-568.	3.6	76
15	Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Scientific Reports, 2019, 9, 5746.	1.6	73
16	Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. European Radiology, 2016, 26, 4390-4403.	2.3	70
17	Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Scientific Reports, 2020, 10, 12110.	1.6	62
18	Radiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic Studies. Nuclear Medicine and Molecular Imaging, 2018, 52, 99-108.	0.6	60

#	Article	IF	CITATIONS
19	Histogram Analysis of Amide Proton Transfer Imaging to Identify Contrast-enhancing Low-Grade Brain Tumor That Mimics High-Grade Tumor: Increased Accuracy of MR Perfusion. Radiology, 2015, 277, 151-161.	3.6	57
20	Thin-Slice Pituitary MRI with Deep Learning–based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology, 2021, 298, 114-122.	3.6	54
21	Pseudoprogression in Patients with Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric Clustering of MR Imaging Data in an Independent Test Set. Radiology, 2015, 275, 792-802.	3.6	53
22	MRI Findings in Tumefactive Demyelinating Lesions: A Systematic Review and Meta-Analysis. American Journal of Neuroradiology, 2018, 39, 1643-1649.	1.2	51
23	Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign. European Radiology, 2020, 30, 844-854.	2.3	51
24	Multiple Cerebral Microbleeds in Hyperacute Ischemic Stroke: Impact on Prevalence and Severity of Early Hemorrhagic Transformation After Thrombolytic Treatment. American Journal of Roentgenology, 2006, 186, 1443-1449.	1.0	50
25	Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Scientific Reports, 2020, 10, 4250.	1.6	50
26	Identification of Early Response to Anti-Angiogenic Therapy in Recurrent Glioblastoma: Amide Proton Transfer–weighted and Perfusion-weighted MRI compared with Diffusion-weighted MRI. Radiology, 2020, 295, 397-406.	3.6	49
27	Alveolar soft-part sarcoma of the head and neck: clinical and imaging features in five cases. American Journal of Neuroradiology, 2005, 26, 1331-5.	1.2	49
28	Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wild-type Glioblastoma. Radiology, 2020, 294, 388-397.	3.6	43
29	Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Neuro-Oncology, 2021, 23, 324-333.	0.6	40
30	Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images. Korean Journal of Radiology, 2020, 21, 987.	1.5	40
31	MRI as a diagnostic biomarker for differentiating primary central nervous system lymphoma from glioblastoma: A systematic review and metaâ€analysis. Journal of Magnetic Resonance Imaging, 2019, 50, 560-572.	1.9	39
32	Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysis. European Radiology, 2018, 28, 3819-3831.	2.3	38
33	Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. Journal of Neuro-Oncology, 2016, 128, 185-194.	1.4	37
34	Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas. Neuroradiology, 2016, 58, 311-320.	1.1	36
35	Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology, 2019, 61, 1261-1272.	1.1	35
36	Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion for Differentiating among Glioblastoma, Metastasis, and Lymphoma Focusing on Diffusion-Related Parameter. PLoS ONE, 2015, 10, e0134761.	1.1	35

#	Article	IF	CITATIONS
37	The utility of susceptibility-weighted imaging for differentiating Parkinsonism-predominant multiple system atrophy from Parkinson's disease: Correlation with 18F-flurodeoxyglucose positron-emission tomography. Neuroscience Letters, 2015, 584, 296-301.	1.0	34
38	Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know. Korean Journal of Radiology, 2016, 17, 598.	1.5	34
39	Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Differentiating High-Grade Glioma from Solitary Brain Metastasis: A Systematic Review and Meta-Analysis. American Journal of Neuroradiology, 2018, 39, 1208-1214.	1.2	34
40	Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis. European Radiology, 2018, 28, 2628-2638.	2.3	33
41	Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation. European Radiology, 2017, 27, 255-266.	2.3	32
42	Shear Wave Elastography as a Quantitative Biomarker of Clinically Significant Portal Hypertension: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2018, 210, W185-W195.	1.0	31
43	Development and Validation of a Deep Learning–Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images. American Journal of Neuroradiology, 2021, 42, 838-844.	1.2	31
44	Comparison of High-Resolution MR Imaging and Digital Subtraction Angiography for the Characterization and Diagnosis of Intracranial Artery Disease. American Journal of Neuroradiology, 2016, 37, 2245-2250.	1.2	30
45	Progression of Middle Cerebral Artery Susceptibility Sign on T2*-Weighted Images: Its Effect on Recanalization and Clinical Outcome After Thrombolysis. American Journal of Roentgenology, 2006, 187, W650-W657.	1.0	30
46	Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis. European Radiology, 2017, 27, 4737-4746.	2.3	29
47	Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis. Neuroradiology, 2019, 61, 525-534.	1.1	28
48	False-Positive Measurement at 2-Hydroxyglutarate MR Spectroscopy in Isocitrate Dehydrogenase Wild-Type Glioblastoma: A Multifactorial Analysis. Radiology, 2019, 291, 752-762.	3.6	28
49	Diminished Quality of Life and Increased Brain Functional Connectivity in Patients with Hypothyroidism After Total Thyroidectomy. Thyroid, 2016, 26, 641-649.	2.4	27
50	Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography. European Radiology, 2018, 28, 3285-3295.	2.3	27
51	CT indices for the diagnosis of hepatic steatosis using non-enhanced CT images: development and validation of diagnostic cut-off values in a large cohort with pathological reference standard. European Radiology, 2019, 29, 4427-4435.	2.3	27
52	Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: Multifactorial analysis in 385 patients. PLoS ONE, 2017, 12, e0183916.	1.1	27
53	Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma. European Radiology, 2021, 31, 3127-3137.	2.3	26
54	The T2-FLAIR mismatch sign as a predictor of IDH-mutant, 1p/19q-noncodeleted lower-grade gliomas: a systematic review and diagnostic meta-analysis. European Radiology, 2021, 31, 5289-5299.	2.3	26

#	Article	IF	CITATIONS
55	Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging. Korean Journal of Radiology, 2020, 21, 1126.	1.5	25
56	Uninterpretable Dynamic Susceptibility Contrast-Enhanced Perfusion MR Images in Patients with Post-Treatment Glioblastomas: Cross-Validation of Alternative Imaging Options. PLoS ONE, 2015, 10, e0136380.	1.1	24
57	Differences in dynamic and static functional connectivity between young and elderly healthy adults. Neuroradiology, 2017, 59, 781-789.	1.1	24
58	Clinically Relevant Imaging Features for <i>MGMT</i> Promoter Methylation in Multiple Glioblastoma Studies: A Systematic Review and Meta-Analysis. American Journal of Neuroradiology, 2018, 39, 1439-1445.	1.2	24
59	Spontaneous and Unruptured Chronic Intracranial Artery Dissection. Clinical Neuroradiology, 2018, 28, 171-181.	1.0	23
60	Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Scientific Reports, 2021, 11, 2913.	1.6	23
61	Immune checkpoint inhibitor therapy may increase the incidence of treatment-related necrosis after stereotactic radiosurgery for brain metastases: a systematic review and meta-analysis. European Radiology, 2021, 31, 4114-4129.	2.3	22
62	The "Central Vein Sign―on T2*-weighted Images as a Diagnostic Tool in Multiple Sclerosis: A Systematic Review and Meta-analysis using Individual Patient Data. Scientific Reports, 2019, 9, 18188.	1.6	21
63	Diagnostic Yield of Staging Brain MRI in Patients with Newly Diagnosed Non–Small Cell Lung Cancer. Radiology, 2020, 297, 419-427.	3.6	21
64	Neuroimaging Findings in Patients with COVID-19: A Systematic Review and Meta-Analysis. Korean Journal of Radiology, 2021, 22, 1875.	1.5	20
65	Neural Substrates of Motor and Non-Motor Symptoms in Parkinson's Disease: A Resting fMRI Study. PLoS ONE, 2015, 10, e0125455.	1.1	20
66	The Korean Society for Neuro-Oncology (KSNO) Guideline for Glioblastomas: Version 2018.01. Brain Tumor Research and Treatment, 2019, 7, 1.	0.4	19
67	Quantitative Analysis Using Highâ€Resolution 3T MRI in Acute Intracranial Artery Dissection. Journal of Neuroimaging, 2016, 26, 612-617.	1.0	18
68	Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data. Radiology, 2017, 285, 206-213.	3.6	18
69	Spatiotemporal Heterogeneity in Multiparametric Physiologic MRI Is Associated with Patient Outcomes in IDH-Wildtype Glioblastoma. Clinical Cancer Research, 2021, 27, 237-245.	3.2	18
70	Primary Central Nervous System Lymphoma: Diagnostic Yield of Whole-Body CT and FDG PET/CT for Initial Systemic Imaging. Radiology, 2019, 292, 440-446.	3.6	17
71	The Korean Society for Neuro-Oncology (KSNO) Guideline for Adult Diffuse Midline Glioma: Version 2021.1. Brain Tumor Research and Treatment, 2021, 9, 1.	0.4	16
72	The Incidence of Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 1785.	1.7	16

#	Article	IF	CITATIONS
73	Which is the best advanced MR imaging protocol for predicting recurrent metastatic brain tumor following gamma-knife radiosurgery: focused on perfusion method. Neuroradiology, 2015, 57, 367-376.	1.1	15
74	Repeatability of amide proton transfer–weighted signals in the brain according to clinical condition and anatomical location. European Radiology, 2020, 30, 346-356.	2.3	15
75	Comparison of MRI and PET as Potential Surrogate Endpoints for Treatment Response After Stereotactic Radiosurgery in Patients With Brain Metastasis. American Journal of Roentgenology, 2018, 211, 1332-1341.	1.0	14
76	Liver-to-Spleen Volume Ratio Automatically Measured on CT Predicts Decompensation in Patients with B Viral Compensated Cirrhosis. Korean Journal of Radiology, 2021, 22, 1985.	1.5	14
77	Reproducible imaging-based prediction of molecular subtype and risk stratification of gliomas across different experience levels using a structured reporting system. European Radiology, 2021, 31, 7374-7385.	2.3	14
78	Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery. European Radiology, 2022, 32, 497-507.	2.3	13
79	Development of Brain Metastases in Patients With Non–Small Cell Lung Cancer and No Brain Metastases at Initial Staging Evaluation: Cumulative Incidence and Risk Factor Analysis. American Journal of Roentgenology, 2021, 217, 1184-1193.	1.0	13
80	A Good Practice–Compliant Clinical Trial Imaging Management System for Multicenter Clinical Trials: Development and Validation Study. JMIR Medical Informatics, 2019, 7, e14310.	1.3	13
81	Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Scientific Reports, 2021, 11, 21302.	1.6	13
82	Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set. Korean Journal of Radiology, 2017, 18, 983.	1.5	12
83	Comparison of Survival Outcomes Between Partial Resection and Biopsy for Primary Glioblastoma: A Propensity Score-Matched Study. World Neurosurgery, 2019, 121, e858-e866.	0.7	12
84	Immune Checkpoint Inhibitor with or without Radiotherapy in Melanoma Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Korean Journal of Radiology, 2021, 22, 584.	1.5	12
85	Prognostic relevance of gemistocytic grade II astrocytoma: gemistocytic component and MR imaging features compared to non-gemistocytic grade II astrocytoma. European Radiology, 2017, 27, 3022-3032.	2.3	11
86	Recurrent Glioblastoma: Combination of High Cerebral Blood Flow with MGMT Promoter Methylation Is Associated with Benefit from Low-Dose Temozolomide Rechallenge at First Recurrence. Radiology, 2017, 282, 212-221.	3.6	11
87	Permeability measurement using dynamic susceptibility contrast magnetic resonance imaging enhances differential diagnosis of primary central nervous system lymphoma from glioblastoma. European Radiology, 2019, 29, 5539-5548.	2.3	11
88	Reliability of fast magnetic resonance imaging for acute ischemic stroke patients using a 1.5-T scanner. European Radiology, 2019, 29, 2641-2650.	2.3	11
89	Deep-learned time-signal intensity pattern analysis using an autoencoder captures magnetic resonance perfusion heterogeneity for brain tumor differentiation. Scientific Reports, 2020, 10, 21485.	1.6	11
90	Vessel Type Determined by Vessel Architectural Imaging Improves Differentiation between Early Tumor Progression and Pseudoprogression in Glioblastoma. American Journal of Neuroradiology, 2021, 42, 663-670.	1.2	11

#	Article	IF	CITATIONS
91	Magnetic Resonance Imaging Parameters for Noninvasive Prediction of Epidermal Growth Factor Receptor Amplification in Isocitrate Dehydrogenase-Wild-Type Lower-Grade Gliomas: A Multicenter Study. Neurosurgery, 2021, 89, 257-265.	0.6	11
92	Clinical Value of Vascular Permeability Estimates Using Dynamic Susceptibility Contrast MRI: Improved Diagnostic Performance in Distinguishing Hypervascular Primary CNS Lymphoma from Glioblastoma. American Journal of Neuroradiology, 2018, 39, 1415-1422.	1.2	10
93	Survival outcome and prognostic factors in anaplastic oligodendroglioma: a single-institution study of 95 cases. Scientific Reports, 2020, 10, 20162.	1.6	10
94	Spatiotemporal habitats from multiparametric physiologic MRI distinguish tumor progression from treatment-related change in post-treatment glioblastoma. European Radiology, 2021, 31, 6374-6383.	2.3	10
95	Supratentorial Gangliocytoma Mimicking Extra-axial Tumor: A Report of Two Cases. Korean Journal of Radiology, 2001, 2, 108.	1.5	9
96	Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma. European Radiology, 2016, 26, 1037-1047.	2.3	9
97	Joint approach based on clinical and imaging features to distinguish non-neoplastic from neoplastic pituitary stalk lesions. PLoS ONE, 2017, 12, e0187989.	1.1	9
98	Diagnostic Yield of Body CT and Whole-Body FDG PET/CT for Initial Systemic Staging in Patients With Suspected Primary CNS Lymphoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2021, 216, 1172-1182.	1.0	9
99	Pre-Operative Perfusion Skewness and Kurtosis Are Potential Predictors of Progression-Free Survival after Partial Resection of Newly Diagnosed Glioblastoma. Korean Journal of Radiology, 2016, 17, 117.	1.5	8
100	The Incidence and Treatment Response of Double Expression of MYC and BCL2 in Patients with Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 3369.	1.7	8
101	Pretreatment brain volumes can affect the effectiveness of deep brain stimulation in Parkinson's disease patients. Scientific Reports, 2020, 10, 22065.	1.6	8
102	Radiological Recurrence Patterns after Bevacizumab Treatment of Recurrent High-Grade Glioma: A Systematic Review and Meta-Analysis. Korean Journal of Radiology, 2020, 21, 908.	1.5	8
103	The Korean Society for Neuro-Oncology (KSNO) Guideline for WHO Grade III Cerebral Gliomas in Adults: Version 2019.01. Brain Tumor Research and Treatment, 2019, 7, 63.	0.4	8
104	Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease. Neuroradiology, 2015, 57, 929-935.	1.1	7
105	Immune Checkpoint Inhibitors with or without Radiotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Diagnostics, 2020, 10, 1098.	1.3	7
106	Low conductivity on electrical properties tomography demonstrates unique tumor habitats indicating progression in glioblastoma. European Radiology, 2021, 31, 6655-6665.	2.3	7
107	Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type. Scientific Reports, 2021, 11, 9912.	1.6	7
108	The Korean Society for Neuro-Oncology (KSNO) Guideline for WHO Grade II Cerebral Gliomas in Adults: Version 2019.01. Brain Tumor Research and Treatment, 2019, 7, 74.	0.4	7

#	Article	IF	CITATIONS
109	Hypovascular Cellular Tumor in Primary Central Nervous System Lymphoma is Associated with Treatment Resistance: Tumor Habitat Analysis Using Physiologic MRI. American Journal of Neuroradiology, 2022, 43, 40-47.	1.2	7
110	Thin-Slice Pituitary MRI with Deep Learning–Based Reconstruction for Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenoma: A Prospective Study. American Journal of Neuroradiology, 2022, 43, 280-285.	1.2	7
111	Clinical impact of preoperative brain MR angiography and MR imaging in candidates for liver transplantation: a propensity score-matching study in a single institution. European Radiology, 2017, 27, 3532-3541.	2.3	6
112	Intracranial Artery Steno-Occlusion: Diagnosis by Using Two-dimensional Spatially Selective Radiofrequency Excitation Pulse MR Imaging. Radiology, 2017, 284, 834-843.	3.6	6
113	Amide proton transfer–weighted MRI can detect tissue acidosis and monitor recovery in a transient middle cerebral artery occlusion model compared with a permanent occlusion model in rats. European Radiology, 2019, 29, 4096-4104.	2.3	6
114	Development and Validation of a Simple Index Based on Non-Enhanced CT and Clinical Factors for Prediction of Non-Alcoholic Fatty Liver Disease. Korean Journal of Radiology, 2020, 21, 413.	1.5	6
115	A National Consensus Survey for Current Practice in Brain Tumor Management I: Antiepileptic Drug and Steroid Usage. Brain Tumor Research and Treatment, 2020, 8, 1.	0.4	6
116	Diffuse glioma, not otherwise specified: imaging-based risk stratification achieves histomolecular-level prognostication. European Radiology, 2022, 32, 7780-7788.	2.3	6
117	Optimized Image-Based Surrogate Endpoints in Targeted Therapies for Glioblastoma: A Systematic Review and Meta-Analysis of Phase III Randomized Controlled Trials. Korean Journal of Radiology, 2020, 21, 471.	1.5	5
118	Research Highlight: Use of Generative Images Created with Artificial Intelligence for Brain Tumor Imaging. Korean Journal of Radiology, 2022, 23, 500.	1.5	5
119	Joint approach of diffusion- and perfusion-weighted MRI in intra-axial mass like lesions in clinical practice simulation. PLoS ONE, 2018, 13, e0202891.	1.1	4
120	Perilesional and homotopic area activation during proverb comprehension after stroke. Brain and Behavior, 2019, 9, e01202.	1.0	4
121	Comparison of Dynamic Contrast-Enhancement Parameters between Gadobutrol and Gadoterate Meglumine in Posttreatment Clioma: A Prospective Intraindividual Study. American Journal of Neuroradiology, 2020, 41, 2041-2048.	1.2	4
122	A National Consensus Survey for Current Practice in Brain Tumor Management III: Brain Metastasis and Primary Central Nervous System Lymphoma. Brain Tumor Research and Treatment, 2020, 8, 20.	0.4	4
123	Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma. PLoS ONE, 2017, 12, e0181933.	1.1	3
124	Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an <i>in vivo</i> Rat Stroke Model, and a Preliminary Study in Human. Investigative Magnetic Resonance Imaging, 2017, 21, 65.	0.2	3
125	Cerebellar Hemangioblastoma: Diagnostic Yield of Contrast-Enhanced Abdominal CT and Whole-Spine MRI as Initial Screening Imaging. American Journal of Roentgenology, 2020, 215, 706-712.	1.0	3
126	Comparative Value of 2-Hydroxyglutarate–to–Lipid and Lactate Ratio versus 2-Hydroxyglutarate Concentration on MR Spectroscopic Images for Predicting Isocitrate Dehydrogenase Mutation Status in Gliomas. Radiology Imaging Cancer, 2020, 2, e190083.	0.7	3

#	Article	IF	CITATIONS
127	Body CT and PET/CT detection of extracranial lymphoma in patients with newly diagnosed central nervous system lymphoma. Neuro-Oncology, 2022, 24, 482-491.	0.6	3
128	The Korean Society for Neuro-Oncology (KSNO) Guideline for Antiepileptic Drug Usage of Brain Tumor: Version 2021.1. Brain Tumor Research and Treatment, 2021, 9, 9.	0.4	2
129	A National Consensus Survey for Current Practice in Brain Tumor Management II: Diffuse Midline Glioma and Meningioma. Brain Tumor Research and Treatment, 2020, 8, 11.	0.4	2
130	Asian Radiology Forum 2016 for Promoting Radiology Together in the Asian-Oceanian Region: Roles of the Asian-Oceanian Society of Radiology and Its Member Societies. Korean Journal of Radiology, 2018, 19, 187.	1.5	1
131	Refinement of response assessment in neuro-oncology (RANO) using non-enhancing lesion type and contrast enhancement evolution pattern in IDH wild-type glioblastomas. BMC Cancer, 2021, 21, 654.	1.1	1
132	Current Applications and Future Perspectives of Brain Tumor Imaging. Journal of the Korean Society of Radiology, 2020, 81, 467.	0.1	1
133	Benign and Malignant Tracheobronchial Strictures:Long Term Follow-up of Treatment with Polyurethane-Covered Retrievable Expandable Nitinol Stents strictures. Journal of the Korean Radiological Society, 2001, 44, 29.	0.0	0
134	Usefulness of CT Scan in Differentiation of T2 from T3a in Renal Cell Carcinoma. Journal of the Korean Radiological Society, 2001, 44, 721.	0.0	0
135	NIMG-19. SYNTHETIC ISOCITRATE DEHYDROGENASE-MUTANT GLIOBLASTOMAS FROM GENERATIVE ADVERSARIAL NETWORK PROVIDE MORPHOLOGIC VARIABILITY AND DIAGNOSTIC PERFORMANCE SIMILAR TO REAL DATA: DEVELOPMENT AND VALIDATION. Neuro-Oncology, 2021, 23, vi131-vi132.	0.6	0
136	NIMG-03. TUMOR HABITAT ANALYSIS BY MAGNETIC RESONANCE IMAGING DISTINGUISHES TUMOR PROGRESSION FROM RADIATION NECROSIS IN BRAIN METASTASES AFTER STEREOTACTIC RADIOSURGERY. Neuro-Oncology, 2021, 23, vi127-vi127.	0.6	0
137	Contrast enhancing pattern on pre-treatment MRI predicts response to anti-angiogenic treatment in recurrent glioblastoma: comparison of bevacizumab and temozolomide treatment. Journal of Neuro-Oncology, 2022, 157, 405-415.	1.4	0