Denes Szucs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Math Performance and Academic Anxiety Forms, from Sociodemographic to Cognitive Aspects: a Meta-analysis on 906,311 Participants. Educational Psychology Review, 2022, 34, 363-399.	8.4	53
2	Statistical Inference and the Replication Crisis. Review of Philosophy and Psychology, 2021, 12, 121-147.	1.8	23
3	The Abbreviated Science Anxiety Scale: Psychometric properties, gender differences and associations with test anxiety, general anxiety and science achievement. PLoS ONE, 2021, 16, e0245200.	2.5	10
4	Dyslexia treatment studies: A systematic review and suggestions on testing treatment efficacy with small effects and small samples. Behavior Research Methods, 2021, 53, 1954-1972.	4.0	14
5	No evidence for a core deficit in developmental dyscalculia or mathematical learning disabilities. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 704-714.	5.2	28
6	Citation Patterns Following a Strongly Contradictory Replication Result: Four Case Studies From Psychology. Advances in Methods and Practices in Psychological Science, 2021, 4, 251524592110408.	9.4	12
7	Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 2020, 221, 117164.	4.2	227
8	Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Developmental Science, 2020, 23, e12957.	2.4	39
9	The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 2018, 36, 220-235.	1.7	64
10	Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety Journal of Educational Psychology, 2018, 110, 431-444.	2.9	104
11	Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 2017, 70, 1837-1855.	1.1	29
12	Physical Similarity or Numerical Representation Counts in Same–Different, Numerical Comparison, Physical Comparison, and Priming Tasks?. Quarterly Journal of Experimental Psychology, 2017, 71, 17470218.2016.1.	1.1	3
13	A critical analysis of design, facts, bias and inference in the approximate number system training literature: A systematic review. Trends in Neuroscience and Education, 2017, 6, 187-203.	3.1	63
14	The illusion of replacement in research into the development of thinking biases: the case of the conjunction fallacy. Journal of Cognitive Psychology, 2017, 29, 240-257.	0.9	10
15	The Modified Abbreviated Math Anxiety Scale: A Valid and Reliable Instrument for Use with Children. Frontiers in Psychology, 2017, 8, 11.	2.1	88
16	Stress, Time Pressure, Strategy Selection and Math Anxiety in Mathematics: A Review of the Literature. Frontiers in Psychology, 2017, 8, 1488.	2.1	61
17	Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review. Frontiers in Psychology, 2017, 8, 1646.	2.1	28
18	When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment. Frontiers in Human Neuroscience, 2017, 11, 390.	2.0	199

#	Article	IF	CITATIONS
19	Differentiating anxiety forms and their role in academic performance from primary to secondary school. PLoS ONE, 2017, 12, e0174418.	2.5	81
20	Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biology, 2017, 15, e2000797.	5.6	459
21	Examining the link between math anxiety and math performance in Colombian students. Revista Colombiana De Psicologia, 2016, 25, .	0.4	15
22	Interaction of Numerical and Nonnumerical Parameters in Magnitude Comparison Tasks With Children and Their Relation to Arithmetic Performance. , 2016, , 305-323.		0
23	Editorial: Mathematical and Statistics Anxiety: Educational, Social, Developmental and Cognitive Perspectives. Frontiers in Psychology, 2016, 7, 1083.	2.1	15
24	A Tutorial on Hunting Statistical Significance by Chasing N. Frontiers in Psychology, 2016, 7, 1444.	2.1	36
25	Shaping prestimulus neural activity with auditory rhythmic stimulation improves the temporal allocation of attention. NeuroReport, 2016, 27, 487-494.	1.2	22
26	The experiential blink: Mapping the cost of working memory encoding onto conscious perception in the attentional blink. Cortex, 2016, 81, 35-49.	2.4	15
27	Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neurolmage, 2016, 143, 40-49.	4.2	60
28	Editorial overview: Neuroscience of education. Current Opinion in Behavioral Sciences, 2016, 10, iv-vi.	3.9	0
29	Subtypes and comorbidity in mathematical learning disabilities. Progress in Brain Research, 2016, 227, 277-304.	1.4	54
30	Common magnitude representation of fractions and decimals is task dependent. Quarterly Journal of Experimental Psychology, 2016, 69, 764-780.	1,1	5
31	Maths anxiety in primary and secondary school students: Gender differences, developmental changes and anxiety specificity. Learning and Individual Differences, 2016, 48, 45-53.	2.7	205
32	Inducing attention not to blink: auditory entrainment improves conscious visual processing. Psychological Research, 2016, 80, 774-784.	1.7	18
33	The Maturation of Interference Suppression and Response Inhibition: ERP Analysis of a Cued Go/Nogo Task. PLoS ONE, 2016, 11, e0165697.	2.5	32
34	The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology, 2015, 27, 310-325.	0.9	84
35	ERP evidence of cognitive strategy change in motivational conditions with varying level of difficulty. Neuropsychologia, 2015, 70, 126-133.	1.6	11
36	Separating stages of arithmetic verification: An ERP study with a novel paradigm. Neuropsychologia, 2015, 75, 322-329.	1.6	23

#	Article	IF	CITATIONS
37	The relationships among executive functions, metacognitive skills and educational achievement in 5 and 7 year-old children. Metacognition and Learning, 2015, 10, 181-198.	2.7	137
38	Children With ADHD Show Impairments in Multiple Stages of Information Processing in a Stroop Task: An ERP Study. Developmental Neuropsychology, 2015, 40, 329-347.	1.4	18
39	Math anxiety and developmental dyscalculia: A study on working memory processes. Journal of Clinical and Experimental Neuropsychology, 2015, 37, 878-887.	1.3	59
40	The Chicken or the Egg? The Direction of the Relationship Between Mathematics Anxiety and Mathematics Performance. Frontiers in Psychology, 2015, 6, 1987.	2.1	196
41	Arithmetic Memory Is Modality Specific. PLoS ONE, 2015, 10, e0145614.	2.5	3
42	The componential processing of fractions in adults and children: effects of stimuli variability and contextual interference. Frontiers in Psychology, 2014, 5, 981.	2.1	7
43	Neural adaptation to non-symbolic number and visual shape: An electrophysiological study. Biological Psychology, 2014, 103, 203-211.	2.2	51
44	Youngâ€age gender differences in mathematics mediated by independent control or uncontrollability. Developmental Science, 2014, 17, 366-375.	2.4	7
45	Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 2014, 32, 73-80.	3.2	80
46	Dissociation between arithmetic relatedness and distance effects is modulated by task properties: An ERP study comparing explicit vs. implicit arithmetic processing. Biological Psychology, 2014, 103, 305-316.	2.2	13
47	Disruption reduces accuracy and P3b amplitudes in the attentional blink. Neuroscience Letters, 2014, 581, 26-31.	2.1	3
48	Flexible and unique representations of two-digit decimals. Acta Psychologica, 2014, 151, 89-97.	1.5	4
49	Cognitive components of a mathematical processing network in 9â€yearâ€old children. Developmental Science, 2014, 17, 506-524.	2.4	118
50	The link between logic, mathematics and imagination: evidence from children with developmental dyscalculia and mathematically gifted children. Developmental Science, 2013, 16, 542-553.	2.4	48
51	Gender differences in developmental dyscalculia depend onÂdiagnostic criteria. Learning and Instruction, 2013, 27, 31-39.	3.2	95
52	Single-digit Arabic numbers do not automatically activate magnitude representations in adults or in children: Evidence from the symbolic same–different task. Acta Psychologica, 2013, 144, 488-498.	1.5	19
53	Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2013, 2, 43-47.	3.1	108
54	Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence. Cortex, 2013, 49, 2888-2903.	2.4	24

#	Article	IF	CITATIONS
55	Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 2013, 49, 2674-2688.	2.4	310
56	Delayed development of proactive response preparation in adolescents: ERP and EMG evidence. Developmental Cognitive Neuroscience, 2013, 3, 33-43.	4.0	16
57	The Development of the Mental Representations of the Magnitude of Fractions. PLoS ONE, 2013, 8, e80016.	2.5	17
58	The mental representations of fractions: adults' same–different judgments. Frontiers in Psychology, 2013, 4, 385.	2.1	13
59	Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology, 2013, 4, 444.	2.1	134
60	Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 2013, 4, 516.	2.1	117
61	A componential view of children's difficulties in learning fractions. Frontiers in Psychology, 2013, 4, 715.	2.1	53
62	Differential Entrainment of Neuroelectric Delta Oscillations in Developmental Dyslexia. PLoS ONE, 2013, 8, e76608.	2.5	57
63	Content-Specificity in Verbal Recall: A Randomized Controlled Study. PLoS ONE, 2013, 8, e79528.	2.5	4
64	Developing Children's Understanding of Fractions: An Intervention Study. Mind, Brain, and Education, 2012, 6, 137-146.	1.9	28
65	Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study. BMC Neuroscience, 2012, 13, 35.	1.9	57
66	Representational change and strategy use in children's number line estimation during the first years of primary school. Behavioral and Brain Functions, 2012, 8, 1.	3.3	72
67	Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 2012, 8, 33.	3.3	284
68	Conscious Access Is Linked to Ongoing Brain State: Electrophysiological Evidence from the Attentional Blink. Cerebral Cortex, 2012, 22, 2346-2353.	2.9	16
69	Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task. Brain Research, 2012, 1477, 27-36.	2.2	14
70	Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. Neurolmage, 2012, 59, 2952-2961.	4.2	133
71	The time course of symbolic number adaptation: Oscillatory EEG activity and event-related potential analysis. NeuroImage, 2012, 59, 3103-3109.	4.2	19
72	Intentional subitizing: Exploring the role of automaticity in enumeration. Cognition, 2012, 124, 107-116.	2.2	9

#	Article	IF	CITATIONS
73	Target Cueing Provides Support for Target- and Resource-Based Models of the Attentional Blink. PLoS ONE, 2012, 7, e37596.	2.5	2
74	Auditory sensory deficits in developmental dyslexia: A longitudinal ERP study. NeuroImage, 2011, 57, 723-732.	4.2	50
75	Educational neuroscience: Developmental mechanisms: Towards a conceptual framework. NeuroImage, 2011, 57, 651-658.	4.2	36
76	The development of inhibitory control: An averaged and single-trial Lateralized Readiness Potential study. NeuroImage, 2011, 57, 671-685.	4.2	40
77	N1, P2 and T-complex of the auditory brain event-related potentials to tones with varying rise times in adults with and without dyslexia. International Journal of Psychophysiology, 2011, 81, 51-59.	1.0	13
78	Executive function effects and numerical development in children: Behavioural and ERP evidence from a numerical Stroop paradigm. Learning and Individual Differences, 2011, 21, 662-671.	2.7	54
79	Symbolic number: the integration of magnitude and spatial representations in children aged 6 to 8 years. Frontiers in Psychology, 2011, 2, 392.	2.1	25
80	Rise time and formant transition duration in the discrimination of speech sounds: the Ba-Wa distinction in developmental dyslexia. Developmental Science, 2011, 14, 34-43.	2.4	110
81	Arithmetic mismatch negativity and numerical magnitude processing in number matching. BMC Neuroscience, 2011, 12, 83.	1.9	10
82	Event-Related Brain Potentials Dissociate the Developmental Time-Course of Automatic Numerical Magnitude Analysis and Cognitive Control Functions During the First Three Years of Primary School. Developmental Neuropsychology, 2011, 36, 682-701.	1.4	17
83	The development of interference control: A pilot study using the manual colour word stroop paradigm. Procedia, Social and Behavioral Sciences, 2010, 2, 4842-4847.	0.5	4
84	Stimulus and response conflict in the color–word Stroop task: A combined electro-myography and event-related potential study. Brain Research, 2010, 1325, 63-76.	2.2	54
85	Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 2010, 6, 13.	3.3	132
86	Event-related brain potentials to violations of arithmetic syntax represented by place value structure. Biological Psychology, 2010, 84, 354-367.	2.2	36
87	Beyond format-specificity: Is analogue magnitude really the core abstract feature of the cultural number representation?. Behavioral and Brain Sciences, 2009, 32, 352-353.	0.7	3
88	Real-time Tracking of Motor Response Activation and Response Competition in a Stroop Task in Young Children: A Lateralized Readiness Potential Study. Journal of Cognitive Neuroscience, 2009, 21, 2195-2206.	2.3	37
89	An electro-physiological temporal principal component analysis of processing stages of number comparison in developmental dyscalculia. Cognitive Development, 2009, 24, 473-485.	1.3	6
90	Motor conflict in Stroop tasks: Direct evidence from single-trial electro-myography and electro-encephalography. NeuroImage, 2009, 47, 1960-1973.	4.2	48

Denes Szucs

#	Article	IF	CITATIONS
91	The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: An ERP study. Brain Research, 2008, 1190, 143-158.	2.2	48
92	Electroencephalography effects to semantic and non-semantic mismatch in properties of visually presented single-characters: The N2b and the N400. Neuroscience Letters, 2007, 412, 18-23.	2.1	38
93	A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neuroscience Letters, 2007, 417, 181-186.	2.1	76
94	The speed of magnitude processing and executive functions in controlled and automatic number comparison in children: an electro-encephalography study. Behavioral and Brain Functions, 2007, 3, 23.	3.3	68
95	Educational Neuroscience: Defining a New Discipline for the Study of Mental Representations. Mind, Brain, and Education, 2007, 1, 114-127.	1.9	95
96	Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 2007, 45, 3190-3202.	1.6	119
97	The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition. Cognitive Brain Research, 2005, 22, 289-300.	3.0	67
98	The use of electrophysiology in the study of early development. Infant and Child Development, 2005, 14, 99-102.	1.5	3
99	The parietal distance effect appears in both the congenitally blind and matched sighted controls in an acoustic number comparison task. Neuroscience Letters, 2005, 384, 11-16.	2.1	41
100	Access to numerical information is dependent on the modality of stimulus presentation in mental addition: a combined ERP and behavioral study. Cognitive Brain Research, 2004, 19, 10-27.	3.0	88
101	Similarities and differences in the coding of numerical and alphabetical order using acoustic stimulation as revealed by event-related potentials in humans. Neuroscience Letters, 2004, 360, 65-68.	2.1	18
102	Number-word reading as challenging task in dyslexia? An ERP study. International Journal of Psychophysiology, 2003, 51, 69-83.	1.0	26
103	KognitÃv eseményhez kötött potenciÃjlok az emlékezetkutatÃjsban: Ãŧtekintés. Magyar Pszichologiai Szemle, 2002, 57, 289-326.	0.2	0
104	A fejlődési diszlexiára (FDL) jellemző beszédhang-feldolgozási zavarok eltérési negativitás (EN) korrelátumai. Magyar Pszichologiai Szemle, 2001, 55, 475-500.	0.2	0
105	Az Eltérési Negativitás mérési-újramérési megbÃzhatósága. Magyar Pszichologiai Szemle, 2001	, 56291-1	060