Constantinos E Salmas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6929549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon. Applied Sciences (Switzerland), 2022, 12, 410.	2.5	1
2	Biomass Waste Carbonization in Piranha Solution: A Route to Hypergolic Carbons?. Micro, 2022, 2, 137-153.	2.0	1
3	Performance of Thyme Oil@Na-Montmorillonite and Thyme Oil@Organo-Modified Montmorillonite Nanostructures on the Development of Melt-Extruded Poly-L-lactic Acid Antioxidant Active Packaging Films. Molecules, 2022, 27, 1231.	3.8	8
4	Use of a Hybrid Porous Carbon Material Derived from Expired Polysaccharides Snack/Iron Salt Exhibiting Magnetic Properties, for Hexavalent Chromium Removal. Polysaccharides, 2022, 3, 326-346.	4.8	1
5	Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials, 2022, 12, 1843.	4.1	21
6	Multifunctional Carbon-Based Hybrid Foams for Shape-Stabilization of Phase Change Materials, Thermal Energy Storage, and Electromagnetic Interference Shielding Functions. Micro, 2022, 2, 390-409.	2.0	2
7	Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the "Posidonia oceanica―seagrass. Journal of Hazardous Materials, 2021, 405, 124274.	12.4	54
8	Development of Poly(L-Lactic Acid)/Chitosan/Basil Oil Active Packaging Films via a Melt-Extrusion Process Using Novel Chitosan/Basil Oil Blends. Processes, 2021, 9, 88.	2.8	16
9	Effect of Na- and Organo-Modified Montmorillonite/Essential Oil Nanohybrids on the Kinetics of the In Situ Radical Polymerization of Styrene. Nanomaterials, 2021, 11, 474.	4.1	14
10	Synthesis of a Novel Chitosan/Basil Oil Blend and Development of Novel Low Density Poly Ethylene/Chitosan/Basil Oil Active Packaging Films Following a Melt-Extrusion Process for Enhancing Chicken Breast Fillets Shelf-Life. Molecules, 2021, 26, 1585.	3.8	15
11	Utilization of Tires Waste-Derived Magnetic-Activated Carbon for the Removal of Hexavalent Chromium from Wastewater. Materials, 2021, 14, 34.	2.9	16
12	Nanoporous Carbon Magnetic Hybrid Derived from Waterlock Polymers and Its Application for Hexavalent Chromium Removal from Aqueous Solution. Journal of Carbon Research, 2021, 7, 69.	2.7	3
13	Nanoclay and Polystyrene Type Efficiency on the Development of Polystyrene/Montmorillonite/Oregano Oil Antioxidant Active Packaging Nanocomposite Films. Applied Sciences (Switzerland), 2021, 11, 9364.	2.5	10
14	Effect of Copper and Titanium-Exchanged Montmorillonite Nanostructures on the Packaging Performance of Chitosan/Poly-Vinyl-Alcohol-Based Active Packaging Nanocomposite Films. Foods, 2021, 10, 3038.	4.3	22
15	The effect of different preparation methods on the development of chitosan/thyme oil/montmorillonite nanocomposite active packaging films. Journal of Food Processing and Preservation, 2020, 44, e14327.	2.0	35
16	Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal. Applied Sciences (Switzerland), 2020, 10, 8812.	2.5	15
17	Development of ZnO/Na-Montmorillonite Hybrid Nanostructures Used for PVOH/ZnO/Na-Montmorillonite Active Packaging Films Preparation via a Melt-Extrusion Process. Nanomaterials, 2020, 10, 1079.	4.1	18
18	Geographical Origin Authentication of Agri-Food Products: A Review. Foods, 2020, 9, 489.	4.3	74

#	Article	IF	CITATIONS
19	Novel LDPE/Chitosan Rosemary and Melissa Extract Nanostructured Active Packaging Films. Nanomaterials, 2019, 9, 1105.	4.1	27
20	Modeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithm. Neural Computing and Applications, 2019, 31, 1747-1763.	5.6	17
21	Enhancing wood resistance to humidity with nanostructured ZnO coatings. Nano Structures Nano Objects, 2017, 10, 57-68.	3.5	22
22	Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydrate Polymers, 2016, 140, 408-415.	10.2	95
23	Evaluation of hydrogen permselective separation from "synthesis gas―components based on single gas permeability measurements on anodic alumina membranes. Fuel Processing Technology, 2011, 92, 2375-2388.	7.2	5
24	PREPARATION AND CHARACTERIZATION OF ANODIC ALUMINUM OXIDE FILMS EXHIBITING MICROPOROSITY. Chemical Engineering Communications, 2008, 196, 407-442.	2.6	2
25	Rigid Sphere Molecular Model Enables an Assessment of the Pore Curvature Effect upon Realistic Evaluations of Surface Areas of Mesoporous and Microporous Materials. Langmuir, 2005, 21, 11146-11160.	3.5	22
26	Relationships among Pore Size, Connectivity, Dimensionality of Capillary Condensation, and Pore Structure Tortuosity of Functionalized Mesoporous Silica. Langmuir, 2003, 19, 3128-3136.	3.5	69
27	Evaluation of Microporosity, Pore Tortuosity, and Connectivity of Montmorillonite Solids Pillared with LaNiOxBinary Oxide. A Combined Application of the CPSM Model, the αs-Plot Method and a Pore Percolationâ^'Connectivity Model. Langmuir, 2003, 19, 8777-8786.	3.5	14
28	A New Method for Microporosity Detection Based on the Use of the Corrugated Pore Structure Model (CPSM) Studies in Surface Science and Catalysis, 2002, , 27-34.	1.5	3
29	The Effect of Surface Functionalization of Mesoporous Silicas with Propylimidazol on Porosity, Pore Connectivity and Tortuosity. Studies in Surface Science and Catalysis, 2002, 144, 299-306.	1.5	1
30	Hydrogen catalytic oxidation reaction on Pd-doped porous silicon. IEEE Sensors Journal, 2002, 2, 89-95.	4.7	35
31	Pilot-Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud. Industrial & Engineering Chemistry Research, 2002, 41, 5794-5801.	3.7	134
32	Pore Structureâ^'Chemical Composition Interactions of New High Surface Area Manganese Based Mesoporous Materials. Materials Preparation, Characterization, and Catalytic Activity. Langmuir, 2002, 18, 423-432.	3.5	23
33	EVOLUTION LIGNITE MESOPORE STRUCTURE DURING DRYING. EFFECT OF TEMPERATURE AND HEATING TIME. Drying Technology, 2001, 19, 35-64.	3.1	75
34	A Novel Pore Structure Tortuosity Concept Based on Nitrogen Sorption Hysteresis Data. Industrial & Engineering Chemistry Research, 2001, 40, 721-730.	3.7	79
35	Pore structure analysis of an SCR catalyst using a new method for interpreting nitrogen sorption hysteresis. Applied Catalysis A: General, 2001, 210, 329-338.	4.3	9
36	An investigation of the physical structure of MCM-41 novel mesoporous materials using a corrugated pore structure model. Applied Catalysis A: General, 2001, 216, 23-39.	4.3	26

#	Article	IF	CITATIONS
37	Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure. Journal of Colloid and Interface Science, 2001, 239, 178-189.	9.4	65
38	TOMOGRAPHY OF MACRO-MESO-PORE STRUCTURE BASED ON MERCURY POROSIMETRY HYSTERESIS. Chemical Engineering Communications, 2000, 181, 137-177.	2.6	26
39	INDIRECT THERMAL DRYING OF LIGNITE: DESIGN ASPECTS OF A ROTARY DRYER. Drying Technology, 2000, 18, 2009-2049.	3.1	41
40	A New Model for Capillary Condensationâ^'Evaporation Hysteresis Based on a Random Corrugated Pore Structure Concept:  Prediction of Intrinsic Pore Size Distributions. 1. Model Formulation. Industrial & Engineering Chemistry Research, 2000, 39, 3747-3763.	3.7	60
41	TOMOGRAPHY OF MACRO-MESO-PORE STRUCTURE BASED ON MERCURY POROSIMETRY HYSTERESIS LOOP SCANNING Part II: MP Hysteresis Loop Scanning Along the Overall Retraction Line. Chemical Engineering Communications, 2000, 181, 179-202.	2.6	11
42	A New Model for Capillary Condensationâ^'Evaporation Hysteresis Based on a Random Corrugated Pore Structure Concept:  Prediction of Intrinsic Pore Size Distribution. 2. Model Application. Industrial & Engineering Chemistry Research, 2000, 39, 3764-3777.	3.7	41
43	A SIMPLIFIED MODEL FOR MERCURY POROSIMETRY HYSTERESIS. Chemical Engineering Communications, 1999, 176, 1-42.	2.6	16