
Victoria Auerbuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6929328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing Cyclic Peptomers as Broad-Spectrum Type III Secretion System Inhibitors in Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2021, 65, e0169020.	3.2	11
2	Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. MBio, 2021, 12, e0063321.	4.1	4
3	The <i>Yersinia</i> Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annual Review of Microbiology, 2020, 74, 221-245.	7.3	13
4	Editorial: The Pathogenic Yersiniae–Advances in the Understanding of Physiology and Virulence, Second Edition. Frontiers in Cellular and Infection Microbiology, 2019, 9, 119.	3.9	2
5	Mouse Models of Yersiniosis. Methods in Molecular Biology, 2019, 2010, 41-53.	0.9	4
6	Complete Genome Assembly of Yersinia pseudotuberculosis IP2666pIB1. Microbiology Resource Announcements, 2019, 8, .	0.6	2
7	Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathogens, 2019, 15, e1008001.	4.7	10
8	Title is missing!. , 2019, 15, e1008001.		0
9	Title is missing!. , 2019, 15, e1008001.		Ο
10	Title is missing!. , 2019, 15, e1008001.		0
11	Title is missing!. , 2019, 15, e1008001.		Ο
12	An Experimental Pipeline for Initial Characterization of Bacterial Type III Secretion System Inhibitor Mode of Action Using Enteropathogenic Yersinia. Frontiers in Cellular and Infection Microbiology, 2018, 8, 404.	3.9	14
13	Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources. Frontiers in Cellular and Infection Microbiology, 2018, 8, 47.	3.9	34
14	Piericidin A1 Blocks <i>Yersinia</i> Ysc Type III Secretion System Needle Assembly. MSphere, 2017, 2, .	2.9	19
15	Investigation of the Physical and Bioactive Properties of Bromo- and Iodo-Containing Sponge-Derived Compounds Possessing an Oxyphenylethanamine Core. Journal of Natural Products, 2017, 80, 3255-3266.	3.0	9
16	Synthetic Cyclic Peptomers as Type III Secretion System Inhibitors. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
17	Bacterial internalization is required to trigger NIK-dependent NF-κB activation in response to the bacterial type three secretion system. PLoS ONE, 2017, 12, e0171406.	2.5	3
18	Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the	3.9	20

Absence of the Type III Secretion System. Frontiers in Cellular and Infection Microbiology, 2016, 6, 69.

VICTORIA AUERBUCH

#	Article	IF	CITATIONS
19	The Type III Secretion System Cleans up Its Act(in). Cell Host and Microbe, 2016, 20, 275-276.	11.0	1
20	Yersinia Type III Secretion System Master Regulator LcrF. Journal of Bacteriology, 2016, 198, 604-614.	2.2	44
21	<scp><i>Y</i></scp> <i>ersinia pseudotuberculosis</i> â€ <scp>YopD</scp> mutants that genetically separate effector protein translocation from host membrane disruption. Molecular Microbiology, 2015, 96, 764-778.	2.5	7
22	Bacterial iron–sulfur cluster sensors in mammalian pathogens. Metallomics, 2015, 7, 943-956.	2.4	44
23	An NF-κB-Based High-Throughput Screen Identifies Piericidins as Inhibitors of the Yersinia pseudotuberculosis Type III Secretion System. Antimicrobial Agents and Chemotherapy, 2014, 58, 1118-1126.	3.2	38
24	lscR ls Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence. PLoS Pathogens, 2014, 10, e1004194.	4.7	53
25	Impact of Host Membrane Pore Formation by the Yersinia pseudotuberculosis Type III Secretion System on the Macrophage Innate Immune Response. Infection and Immunity, 2013, 81, 905-914.	2.2	31
26	Chemical Inhibitors of the Type Three Secretion System: Disarming Bacterial Pathogens. Antimicrobial Agents and Chemotherapy, 2012, 56, 5433-5441.	3.2	114
27	Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion. PLoS Pathogens, 2009, 5, e1000686.	4.7	80
28	Growth of Yersinia pseudotuberculosis in Mice Occurs Independently of Toll-Like Receptor 2 Expression and Induction of Interleukin-10. Infection and Immunity, 2007, 75, 3561-3570.	2.2	33
29	Bacterial Ligands Generated in a Phagosome Are Targets of the Cytosolic Innate Immune System. PLoS Pathogens, 2007, 3, e51.	4.7	136
30	Mice Lacking the Type I Interferon Receptor Are Resistant to <i>Listeria monocytogenes </i> . Journal of Experimental Medicine, 2004, 200, 527-533.	8.5	412
31	Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Molecular Microbiology, 2003, 49, 1361-1375.	2.5	66
32	The cell biology of Listeria monocytogenes infection. Journal of Cell Biology, 2002, 158, 409-414.	5.2	402
33	Pivotal role of VASP in Arp2/3 complex–mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. Journal of Cell Biology, 2001, 155, 89-100.	5.2	126
34	Development of a Competitive Index Assay To Evaluate the Virulence of Listeria monocytogenes actAMutants during Primary and Secondary Infection of Mice. Infection and Immunity, 2001, 69, 5953-5957.	2.2	75
35	Analysis of Genes Encoding an Alternative Nitrogenase in the Archaeon Methanosarcina barkeri 227. Journal of Bacteriology, 2000, 182, 3247-3253.	2.2	41
36	Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway. Cellular Microbiology, 1999, 1, 249-257.	2.1	27