List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6928839/publications.pdf Version: 2024-02-01

VOLKER RÄTHM

#	Article	IF	CITATIONS
1	A comprehensive review on carotenoids in foods and feeds: <i>status quo</i> , applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 2022, 62, 1999-2049.	5.4	132
2	Phytochemical analysis, antioxidant, antibacterial, and cytotoxic activities of leaves and roots of Rubus hyrcanus Juz European Food Research and Technology, 2022, 248, 141-152.	1.6	6
3	Egg yolk colour in organic production as affected by feeding – Consequences for farmers and consumers. Food Chemistry, 2022, 382, 131854.	4.2	8
4	Phytochemical analysis, antioxidant, cytotoxic, and antimicrobial activities of golden chamomile (<i>Matricaria aurea</i> (Loefl.) Schultz Bip). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2022, .	0.6	4
5	Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annual Review of Food Science and Technology, 2021, 12, 433-460.	5.1	72
6	High-Pressure Processing of Kale: Effects on the Extractability, In Vitro Bioaccessibility of Carotenoids & Vitamin E and the Lipophilic Antioxidant Capacity. Antioxidants, 2021, 10, 1688.	2.2	7
7	Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany. European Food Research and Technology, 2020, 246, 2079-2092.	1.6	10
8	Allergenicity of apple allergen Mal d 1 as effected by polyphenols and polyphenol oxidase due to enzymatic browning. LWT - Food Science and Technology, 2019, 113, 108289.	2.5	17
9	Carotenoids. Antioxidants, 2019, 8, 516.	2.2	7
10	(allâ€E)―and (5Z)â€Lycopene Display Similar Biological Effects on Adipocytes. Molecular Nutrition and Food Research, 2019, 63, e1800788.	1.5	26
11	Influence of polyphenolic content on the in vitro allergenicity of old and new apple cultivars: A pilot study. Nutrition, 2019, 58, 30-35.	1.1	27
12	Polyphenols, Vitamin C, <i>in Vitro A</i> ntioxidant Capacity, α-Amylase and COX-2 Inhibitory Activities of Citrus Samples from Aceh, Indonesia. International Journal for Vitamin and Nutrition Research, 2019, 89, 337-347.	0.6	8
13	In Vitro Bioaccessibility of Carotenoids and Vitamin E in Rosehip Products and Tomato Paste As Affected by Pectin Contents and Food Processing. Journal of Agricultural and Food Chemistry, 2018, 66, 3801-3809.	2.4	25
14	Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chemistry, 2018, 242, 435-442.	4.2	34
15	Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fluid extraction from microwave pretreated seeds of wild growing Punica granatum L Journal of Supercritical Fluids, 2018, 133, 225-232.	1.6	23
16	Effects of high pressure processing on bioactive compounds in spinach and rosehip puree. European Food Research and Technology, 2018, 244, 395-407.	1.6	24
17	Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. Frontiers in Chemistry, 2018, 6, 483.	1.8	102
18	Bioactive Compounds and Antioxidant Capacity of Rosa rugosa Depending on Degree of Ripeness. Antioxidants, 2018, 7, 134.	2.2	16

#	Article	IF	CITATIONS
19	Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants, 2018, 7, 20.	2.2	140
20	Vitamin E. Antioxidants, 2018, 7, 44.	2.2	16
21	High-Pressure Processing of Broccoli Sprouts: Influence on Bioactivation of Glucosinolates to Isothiocyanates. Journal of Agricultural and Food Chemistry, 2017, 65, 8578-8585.	2.4	51
22	Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry, 2017, 217, 266-273.	4.2	192
23	In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia. Antioxidants, 2017, 6, 11.	2.2	29
24	Comparison of Chemical Profile and Antioxidant Capacity of Seeds and Oils from <i>Salvia sclarea</i> and <i>Salvia officinalis</i> . Chemistry and Biodiversity, 2017, 14, e1700344.	1.0	15
25	Lycopene supplementation restores vitamin A deficiency in mice and possesses thereby partial proâ€vitamin A activity transmitted via RAR signaling. Molecular Nutrition and Food Research, 2016, 60, 2413-2420.	1.5	27
26	Food-based modification of LC-PUFA concentration in complementary food did not affect plasma vitamin E concentration in infants. NFS Journal, 2016, 3, 25-32.	1.9	8
27	Carotenoids of indigenous citrus species from Aceh and its in vitro antioxidant, antidiabetic and antibacterial activities. European Food Research and Technology, 2016, 242, 1869-1881.	1.6	19
28	Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 1868-1879.	5.4	177
29	Interactions between lipophilic antioxidants measured by photochemiluminescence assay and α-tocopherol equivalent antioxidant capacity assay as well as the influence of matrix compounds on the lipophilic antioxidant capacity. LWT - Food Science and Technology, 2015, 64, 817-823.	2.5	8
30	Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chemistry, 2015, 175, 593-600.	4.2	46
31	Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chemistry, 2015, 170, 193-202.	4.2	101
32	Regarding Macular Xanthophylls and ï‰-3 Long-Chain Polyunsaturated Fatty Acids in Age-Related Macular Degeneration—Reply. JAMA Ophthalmology, 2014, 132, 231.	1.4	0
33	Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT - Food Science and Technology, 2014, 57, 442-445.	2.5	27
34	Use of Photochemiluminescence for the Determination of Antioxidant Activities of Carotenoids and Antioxidant Capacities of Selected Tomato Products. Journal of Agricultural and Food Chemistry, 2014, 62, 7452-7459.	2.4	25
35	Vitamin E Content and Estimated Need in German Infant and Follow-On Formulas With and Without Long-Chain Polyunsaturated Fatty Acids (LC-PUFA) Enrichment. Journal of Agricultural and Food Chemistry, 2014, 62, 10153-10161.	2.4	14
36	Analytical characterisation of the seeds of two tomato varieties as a basis for recycling of waste materials in the food industry. European Food Research and Technology, 2014, 239, 613-620.	1.6	15

#	Article	IF	CITATIONS
37	Age-related macular degeneration: Effects of a short-term intervention with an oleaginous kale extract—a pilot study. Nutrition, 2013, 29, 1412-1417.	1.1	20

Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical) Tj ETQq0.0 rg $^{BT}_{0.9}$ /Overlock 10 Tf 50

39	Macular Xanthophylls and ω-3 Long-Chain Polyunsaturated Fatty Acids in Age-Related Macular Degeneration. JAMA Ophthalmology, 2013, 131, 564.	1.4	43
40	Antioxidant Capacity of Tomato Seed Oil in Solution and Its Redox Properties in Cultured Macrophages. Journal of Agricultural and Food Chemistry, 2013, 61, 346-354.	2.4	19
41	Lycopene and heart health. Molecular Nutrition and Food Research, 2012, 56, 296-303.	1.5	75
42	Do Apo‣ycopenoids Have Antioxidant Activities In Vitro?. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 849-858.	0.8	4
43	Lycopene and heart health. Molecular Nutrition and Food Research, 2012, 56, 296-303.	1.5	26
44	Bioaccessibility of Carotenoids and Vitamin E from Pasta: Evaluation of an in Vitro Digestion Model. Journal of Agricultural and Food Chemistry, 2011, 59, 1163-1170.	2.4	56
45	Comparative Study on Antioxidant Activity of Lycopene (<i>Z</i>)-Isomers in Different Assays. Journal of Agricultural and Food Chemistry, 2011, 59, 4504-4511.	2.4	96
46	Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 2011, 129, 139-148.	4.2	417
47	Lack of effects of tomato products on endothelial function in human subjects: results of a randomised, placebo-controlled cross-over study. British Journal of Nutrition, 2011, 105, 263-267.	1.2	34
48	Analysis of carotenoids and vitamin E in selected oilseeds, press cakes and oils. European Journal of Lipid Science and Technology, 2010, 112, 1122-1129.	1.0	80
49	<i>In vitro</i> antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Molecular Nutrition and Food Research, 2010, 54, 731-742.	1.5	164
50	Lycopene prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophagesâ~†. Journal of Nutritional Biochemistry, 2010, 21, 34-46.	1.9	96
51	Antioxidant capacity and related parameters of different fruit formulations. LWT - Food Science and Technology, 2010, 43, 992-999.	2.5	117
52	Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Molecular Nutrition and Food Research, 2009, 53, S194-218.	1.5	575
53	Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays. European Food Research and Technology, 2009, 228, 813-821.	1.6	111
54	Determination of the antioxidant capacity: influence of the sample concentration on the measured values. European Food Research and Technology, 2009, 230, 249-254.	1.6	18

#	Article	IF	CITATIONS
55	Contents of Vitamin C, Carotenoids, Tocopherols, and Tocotrienols in the Subtropical Plant Species <i>Cyphostemma digitatum</i> as Affected by Processing. Journal of Agricultural and Food Chemistry, 2009, 57, 5420-5427.	2.4	42
56	Development of a New Method for the Complete Extraction of Carotenoids from Cereals with Special Reference to Durum Wheat (<i>Triticum durum</i> Desf.). Journal of Agricultural and Food Chemistry, 2007, 55, 8295-8301.	2.4	45
57	Isolation and Structural Elucidation of Different Geometrical Isomers of Lycopene. International Journal for Vitamin and Nutrition Research, 2007, 77, 369-375.	0.6	68
58	Effects of ingestion of tomatoes, tomato juice and tomato purée on contents of lycopene isomers, tocopherols and ascorbic acid in human plasma as well as on lycopene isomer pattern. British Journal of Nutrition, 2006, 95, 734-741.	1.2	54
59	Processing Strawberries to Different Products Alters Contents of Vitamin C, Total Phenolics, Total Anthocyanins, and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2005, 53, 5640-5646.	2.4	236
60	Changes in Contents of Carotenoids and Vitamin E during Tomato Processing. Journal of Agricultural and Food Chemistry, 2004, 52, 7005-7010.	2.4	178
61	Cleavage Products of Lycopene Produced by in Vitro Oxidations:Â Characterization and Mechanisms of Formation. Journal of Agricultural and Food Chemistry, 2003, 51, 7318-7325.	2.4	99
62	Rosehip –– a "new―source of lycopene?. Molecular Aspects of Medicine, 2003, 24, 385-389.	2.7	60
63	Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. Journal of Agricultural and Food Chemistry, 2003, 51, 7962-7968.	2.4	243
64	Spectrophotometric Determination of Yellow Pigment Content and Evaluation of Carotenoids by High-Performance Liquid Chromatography in Durum Wheat Grain. Journal of Agricultural and Food Chemistry, 2002, 50, 6663-6668.	2.4	172
65	Trolox Equivalent Antioxidant Capacity of Different Geometrical Isomers of α-Carotene, β-Carotene, Lycopene, and Zeaxanthin. Journal of Agricultural and Food Chemistry, 2002, 50, 221-226.	2.4	303
66	Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. European Journal of Nutrition, 1999, 38, 118-125.	1.8	138
67	High pressure processing and heat sterilization of kale: Impact on extractability, antioxidant capacity and storability of carotenoids and vitamin E. , 0, , .		2